K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

Ta có:

$AB.AC=AH.BC=40$ 

$AB^2+AC^2=BC^2=100$

$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$

$\Rightarrow AB+AC=6\sqrt{5}$

Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$

$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$

$\Rightarrow IK=AH=4$

Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$

Mặt khác, theo hệ thức lượng trong tam giác vuông:

$AI.AB=AH^2$

$AK.AC=AH^2$

$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$

Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)

Chu vi AIHK:

$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)

Diện tích AIHK:

$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Hình vẽ:

24 tháng 10 2019

A B C H I K 4 x

đặt AB=x

dễ chứng tam giác HBA và tam giác ABC đồng dạng => AB2 =BH.BC <=> x2 = 4BH => BH= \(\frac{x^2}{4}\)

pytago cho tam giác HAB : AB2= BH2+ AH2 => AH2 = x2\(\frac{x^4}{16}\)=> AH = \(\frac{x}{4}\sqrt{16-x^2}\)

SAIHK = HI.HK \(\le\frac{HI^2+HK^2}{2}=\frac{AH^2}{2}\)\(\frac{x^2\left(16-x^2\right)}{32}\)

áp dụng ab\(\le\frac{\left(a+b\right)^2}{4}\)=> \(x^2\left(16-x^2\right)\le\frac{\left(x^2+16-x^2\right)^2}{4}=\frac{16^2}{4}\)

=> SAIHK \(\le\frac{16^2}{4.32}=2\)

Đạt được khi HI=HK và x2=16-x2 => x=AB= 2\(\sqrt{2}\) 

HI=HK => ABC vuông cân ở A

13 tháng 10 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH=6(cm)

b: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=180^0\)

=>ADHE là tứ giác nội tiếp

=>A,D,H,E cùng nằm trên 1 đường tròn

c: \(\widehat{CAK}+\widehat{BAK}=90^0\)

\(\widehat{CKA}+\widehat{HAK}=90^0\)

mà \(\widehat{BAK}=\widehat{HAK}\)

nên \(\widehat{CAK}=\widehat{CKA}\)

=>ΔCAK cân tại C

ΔCAK cân tại C

mà CI là đường trung tuyến

nên CI là đường cao

=>CI vuông góc AK

13 tháng 10 2023

 bạn vẽ hình có đc k ah ?

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ