Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta can cm\(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}\) =\(\sqrt[3]{BC}\)
hay \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=1\)
trong tam giác AHB \(BH^2=BE.BA\Rightarrow BE=\frac{BH^2}{BA}\Rightarrow BE^2=\frac{BH^4}{BA^2}\) (1)
ma trong tam giac ABC \(AB^2=BH.BC\)
thay vao (1) ta co \(BE^2=\frac{BH^4}{AB^2}=\frac{BH^4}{BH.BC}=\frac{BH^3}{BC}\Rightarrow\frac{BE^2}{BC^2}=\frac{BH^3}{BC^3}\)
\(\Rightarrow\sqrt[3]{\frac{BE^2}{BC^2}}=\frac{BH}{BC}\)
CM TUONG TU \(\sqrt[3]{\frac{CF^2}{BC^2}}=\frac{CH}{BC}\)
VAY \(\sqrt[3]{\frac{BE^2}{BC^2}}+\sqrt[3]{\frac{CF^2}{BC^2}}=\frac{HB}{BC}+\frac{CH}{BC}=1\)
Câu 2:
A B C M K H
Từ B, kẻ đường thẳng vuông góc với BC cắt AC tại M.
Từ giả thiết, ta có:
\(\cdot\) AH // BM (do cùng _I_ BC)
\(\cdot\) H là trung điểm của BC (\(\Delta ABC\) cân tại A có AH là đường cao)
Suy ra AH là đường trung bình của \(\Delta BMC\)
\(\Rightarrow BM=2AH\)
Xét \(\Delta BMC\) vuông tại B có BK là đường cao
\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BM^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)
Câu 1:
A B C H E F
Xét \(\Delta ABC\) vuông tại A có AH là đường cao
\(\Rightarrow AB^2=BH\times BC\)
Xét \(\Delta HBA\) vuông tại H có HE là đường cao
\(\Rightarrow BH^2=BE\times AB\)
\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}=\dfrac{BH^4}{BH\times BC}=\dfrac{BH^3}{BC}\)
Chứng minh tương tự, ta có: \(CF^2=\dfrac{CH^3}{BC}\)
Suy ra \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\dfrac{BH}{\sqrt[3]{BC}}+\dfrac{CH}{\sqrt[3]{BC}}=\dfrac{BH+CH}{\sqrt[3]{a}}=\dfrac{a}{\sqrt[3]{a}}=\left(\sqrt[3]{a}\right)^2\)
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Akai Haruma Nguyễn Thanh Hằng Mashiro Shiina
1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
Suy ra: góc AEF=góc AHF=góc C(1)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>góc MAC=góc MCA(2)
Từ (1) và (2) suy ra góc AEF=góc C
2: Tham khảo: