K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh tứ giác DHKC nội tiếp b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD c) Đường thẳng đi qua K song song với BC cắt đường...
Đọc tiếp

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC).

a) Chứng minh tứ giác DHKC nội tiếp

b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD

c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC thì E luôn nằm trên một đường tròn cố định.

Bài 4. Cho đường tròn tâm (O), hai điểm A, B nằm trên (O) sao cho AOB = 900 . Điểm C trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI và BK của tam giác ABC cắt nhau tại H, BK cắt (O) tại N (N khác B); AI cắt (O) tại điểm M (M khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng

a) Tứ giác CIHK nội tiếp

b) MN là đường kính của (O)

c) OC song song với DH.

 

GIÚP MÌNH VỚI!!!

GẤPPP

1
17 tháng 2 2020

Xin lỗi các bạn nhé 

Bài 3: góc ABD = 60 độ

Bài 4: AOB = 90 độ

21 tháng 5 2018

O O' A B H C F D K G E 1 2 3 4

a) Xét đường tròn (O';R) có: Đường kính OC và điểm A nằm trên cung OC => ^OAC=900

=> OA vuông góc với AC. Mà OA là bán kính của (O) => AC là tiếp tuyến của (O)

Ta thấy: 2 đường tròn (O) và (O') có cùng bán kính R => OA=OB=O'A=O'B= R

=> Tứ giác AOBO' là hình thoi =>OA // O'B

Lại có: OA vuông góc AC (cmt) => O'B vuông góc AC (Qhệ //, vg góc) hay BF vuông góc AC (đpcm).

b) Xét tứ giác ADKO: ^DKO=^OAD=900 (=^OAC)

=> Tứ giác ADKO nội tiếp đường tròn tâm là trg điểm OD (đpcm). 

c) Do tứ giác AOBO' là hình thoi nên AB vuông góc OO' (tại H) (1)

Ta có điểm B thuộc (O') và F đối xứng B qua O' => F thuộc (O') (Vì đường tròn có tâm đối xứng)

Xét (O') đường kính BF và A thuộc cung BF => AB vuông góc AF (2)

Từ (1) và (2) => OO' // AF

Xét tứ giác AOO'F: OO' // AF; OA // O'F (cmt) => Tứ giác AOO'F là hình bình hành

=> AF = OO'. Mà AF=AD nên AD=OO'.  Lại có: OO' = OA => AD=OA.

Xét tứ giác ADKO nội tiếp đường tròn => ^AOK+^ADK = 1800

Mà ^ADK + ^ADG = 1800 nên ^AOK=^ADG hay ^AOH=^ADG

Xét \(\Delta\)AHO và \(\Delta\)AGD: AO=AD (cmt); ^AOH=^ADG; ^AHO=^AGD=900

=> \(\Delta\)AHO=\(\Delta\)AGD (Cạnh huyền góc nhọn) => AH=AG

Xét tứ giác AHKG: ^AHK=^HKG=^HAG=900;  AH=AG (cmt) => Tứ giác AHKG là hình vuông.

d) Dễ thấy: AO=OO'=O'A => Tam giác AOO' đều => ^AO'O = 600

Lại có: Hình bình hành AOO'F có O'O=O'F => Tứ giác AOO'F là hình thoi

=> ^AO'O=^AO'F = 600 => ^FO'C = 600

=> SHình quạt  AO'O = 1/6 S (O) = \(\frac{R^2.\pi}{6}\)

Tương tự, suy ra: S H.quạt AO'O = S H.quạt BO'O = S H,quạt AOO' = S H.quạt BOO' = \(\frac{R^2.\pi}{6}\)

Cộng tất cả lại => \(S_1+S_2+S_3+S_4+2.S_{AOBO'}=4.\frac{R^2.\pi}{6}=\frac{2R^2.\pi}{3}\)

\(\Rightarrow S_1+S_2+S_3+S_4+S_{AOBO'}=\frac{2R^2.\pi}{3}-S_{AOBO'}\)

\(\Rightarrow S_{P.C}=\frac{2R^2.\pi}{3}-R^2.\frac{\sqrt{3}}{2}=\frac{4R^2.\pi}{6}-\frac{3\sqrt{3}.R^2}{6}=\frac{R^2.\left(4\pi-3\sqrt{3}\right)}{6}\)

\(=\frac{R^2.\left(4.3,14-3.1,73\right)}{6}=\frac{R^2.7,37}{6}\)(Chú thích SPhần chung: SP.C)

Vậy diện tích phần chung của (O0 và (O') tính theo R là \(S_{P.C}=\frac{7,37.R^2}{6}.\)

21 tháng 5 2018

F G A B C E O' K D N O

a) Xét đường tâm O'

\(\widehat{OAC}=90^o\)

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :a) A, I, H, B là 4 đỉnh của 1 hình bình hànhb) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính RBài 2 : Cho đường tròn tâm O, đường kính AB và một...
Đọc tiếp

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@


Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R

Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng

Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O)(O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm

0
9 tháng 7 2019

A B C K M N H O

1) Dễ thấy ^CHN = ^CKN = 900 => Bốn điêm C,H,K,N cùng thuộc đường tròn đường kính CN

Hay tứ giác CNKH nội tiếp đường tròn (CN) (đpcm).

2) Sđ(BCnhỏ = 1200 => ^BOC = 1200 => ^BNC = 1/2.Sđ(BCnhỏ = 1/2.^BOC = 600

Vì tứ giác CNKH nội tiếp (cmt) nên ^KHC = 1800 - ^CNK = 1800 - ^BNC = 1200.

3) Hệ thức cần chứng minh tương đương với:

2KN.MN = AM2 - AN2 - MN2 <=> 2KN.MN = MN.MB - MN2 - AN2 (Vì AM2 = MN.MB)

<=> 2KN.MN = MN.BN - AN2 <=> AN2 = MN(BN - 2KN)

<=> AK2 + KN2 = MN(BK - KN) (ĐL Pytagoras) <=> AK2 + KN.KM = MN.BK

<=> AM2 - (MK2 - KN.KM) = MN.BK (ĐL Pytagoras) <=> AM2 - MK.MN = MN.BK

<=> AM2 = MN(BK + MK) = MN.MB <=> AM2 = AM2 (Hệ thức lượng đường tròn) (Luôn đúng)

Do đó hệ thức ban đầu đúng. Vậy KN.MN = 1/2.(AM- AN2 - MN2) (đpcm).