Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
A B C H K E
Khá ez:))
Δ AKB ~ Δ AEC (g.g) vì:
+ \(\widehat{BAK}=\widehat{CAE}\) (góc chung)
+ \(\widehat{AKB}=\widehat{AEC}=90^0\)
=> \(\frac{AK}{AE}=\frac{AB}{AC}\)
Từ đó ta dễ dàng CM được: Δ AKE ~ Δ ABC (c.g.c)
=> \(\frac{S_{AKE}}{S_{ABC}}=\left(\frac{AK}{AB}\right)^2=\cos^2A\)
Tương tự như vậy ta CM được: \(\frac{S_{BHE}}{S_{ABC}}=\cos^2B\) ; \(\frac{S_{CHK}}{S_{ABC}}=\cos^2C\)
Thay vào ta sẽ được: \(\left(1-\cos^2A-\cos^2B-\cos^2C\right)\cdot S_{ABC}\)
\(=\left(1-\frac{S_{AKE}}{S_{ABC}}-\frac{S_{BHE}}{S_{ABC}}-\frac{S_{CHK}}{S_{ABC}}\right)\cdot S_{ABC}\)
\(=S_{ABC}-S_{AKE}-S_{BHE}-S_{CHK}=S_{HKE}\)
=> đpcm
B A C H E K E'
Kẻ EE' vuông góc với AC., ta có:
\(\frac{S_{AKE}}{S_{ABC}}=\frac{\frac{1}{2}EE'.AK}{\frac{1}{2}BK.AC}=\frac{EE'}{BK}.\frac{AK}{AC}=\frac{AE}{AB}.\frac{AK}{AC}\)
\(=\frac{AE}{AC}.\frac{AK}{AB}=\cos A.\cos A=\cos^2A.\)
Vậy \(\frac{S_{AKE}}{S_{ABC}}=\cos^2A\)
Tương tự, \(\frac{S_{BEH}}{S_{ABC}}=\cos^2B;\frac{S_{CKH}}{S_{ABC}}=\cos^2C\)\(\Rightarrow\frac{S_{KHE}}{S_{ABC}}=1-\frac{S_{AKE}}{S_{ABC}}-\frac{S_{BEH}}{S_{ABC}}-\frac{S_{CKH}}{S_{ABC}}=1-\cos^2A-\cos^2B-\cos^2C\)
Vậy =>đpcm
Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
Xét tam giác ABC vuông tại A có BC = BH + CH = 7cm
Theo hệ thức lượng trong tam giác vuông ta có:
Đáp án cần chọn là: A