Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: + AB2 + AC2 = 62 + 82 = 100
+ BC2 = 102 = 100
=> AB2 + AC2 = BC2 = 100
=> tam giác ABC vuông tại A theo định lí pytago
b/ 4 ý này trong sách hình học 9 có CM nha bạn
c/ AH.BC = AB.AC
=> AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\)cm
AB2= BC.BH
=> BH= \(\frac{AB^2}{BC}\)= \(\frac{6^2}{10}\)
= 3,6 cm
AC2 = BC.CH
=> CH= \(\frac{AC^2}{BC}=\frac{8^2}{10}=6,4cm\)
b) Định lí PYTAGO cho tam giác AHM vuông tại H: \(AM^2=AH^2+HM^2\Rightarrow AH^2=AM^2-HM^2\)
M trung điểm HC \(\Rightarrow HM=MC\Rightarrow AH^2=AM^2-MC^2\)(1)
Định lí PYTAGO cho 2 tam giác AMI và CMI đều vuông tại I: \(\hept{\begin{cases}AM^2=AI^2+MI^2\\MC^2=MI^2+IC^2\end{cases}}\)
Thế vào (1) \(\Rightarrow AH^2=\left(AI^2+MI^2\right)-\left(MI^2+IC^2\right)=AI^2-IC^2\)
hình:
A B C H
~~~
a/ Ta có: BC = BH + CH = 4 + 9 = 13(cm)
a/d hệ thức lượng trong tam giác ABC vuông tại A có:
\(\left\{{}\begin{matrix}AB^2=BC\cdot BH=13\cdot4=52\\AH^2=BH\cdot CH=9\cdot4=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB\approx7,2\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)
b/ Ta có: cosB = \(\dfrac{AB}{BC}=\dfrac{7,2}{13}\Rightarrow\widehat{B}=34^o\)
a/d pitago vào tam giác ABC có:
\(BC^2=AB^2+AC^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-7,2^2}\approx10,8\left(cm\right)\)
c/ \(S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot6\cdot13=39\left(cm^2\right)\)
A B C H
a) Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)
\(\Leftrightarrow\)\(BC=13\)
b) Áp dụng hệ thức lượng ta có:
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)
c) \(sinB=\frac{AC}{BC}=\frac{12}{13}\) \(tanB=\frac{AC}{AB}=\frac{12}{5}\)
\(cosB=\frac{AB}{BC}=\frac{5}{13}\) \(cotB=\frac{AB}{AC}=\frac{5}{12}\)