\(BC^2=2AH^2+BH^2+CH^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

Bạn tự vẽ hình nhé ^_^

 Xét \(\Delta ABC\)vuông tại A có:

\(BC^2=AB^2+AC^2\)

Xét \(\Delta ABH\) vuông tại H :

\(AB^2=BH^2+AH^2\)

Xét \(\Delta AHC\) vuông tại H:

\(AC^2=AH^2+HC^2\)

\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(\Rightarrow BC^2=2AH^2+BH^2+CH^2\left(đpcm\right)\)

2 tháng 7 2021

A B C H D K

a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến 

=> BH = HC

Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC

=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH

b) Xét tam giác BCD vuông tịa B có BK là đường cao

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

27 tháng 10 2015

Goij D là trung điểm của BC =>AD=BC/2=(a+b)/2


ma  AH=căn ab


va  AH</ AD

9 tháng 8 2019

câu a) bn có thể vào câu hỏi tương tự xem, cái này làm vui thôi 

Ta có: \(BN=\frac{BH^2}{AB};CM=\frac{CH^2}{AC};AB.AC=AH.BC;BH.CH=AH^2\)

\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\)

\(\Leftrightarrow\)\(BC^2=BN^2+CM^2+3\sqrt[3]{\left(BN.CM\right)^2}\left(\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\right)\)

\(\Leftrightarrow\)\(BC^2=BH^2-NH^2+CH^2-MH^2+3\sqrt[3]{\left(\frac{\left(BH.CH\right)^2}{AB.AB}\right)^2}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=\left(BH^2+CH^2\right)-\left(NH^2+MH^2\right)+3\sqrt[3]{\left(\frac{AH^4}{AH.BC}\right)^2}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=\left(BH+CH\right)^2-2BH.CH-\left(NH^2+MH^2\right)+3\sqrt[3]{\frac{AH^6}{BC^2}}.\sqrt[3]{BC^2}\)

\(\Leftrightarrow\)\(BC^2=BC^2-2AH^2-AH^2+3AH^2\) ( do \(NH^2=AM^2\) ) 

\(\Leftrightarrow\)\(BC^2=BC^2\) ( luôn đúng ) 

\(\Rightarrow\)\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\) đúng 

9 tháng 8 2019

b) bằng một cách nào đó \(\Delta NBH\) đã đồng dạng với \(\Delta ABC\) ( có góc B chung ) \(\Rightarrow\)\(\frac{BN}{AB}=\frac{BH}{BC}\)

Tương tự: \(\Delta MHC~\Delta ABC\) ( có góc C chung ) \(\Rightarrow\)\(\frac{CM}{AC}=\frac{CH}{BC}\)

\(\Rightarrow\)\(\frac{BN}{AB}+\frac{CM}{AC}=\frac{BH+CH}{BC}=1\)

\(\Leftrightarrow\)\(BN.AC+CM.AB=AB.AB\)

\(\Leftrightarrow\)\(BN\sqrt{AC^2}+CM\sqrt{AB^2}=AB.AC\)

\(\Leftrightarrow\)\(BN\sqrt{CH.BC}+CM\sqrt{BH.BC}=AH.BC\)

\(\Leftrightarrow\)\(BN\sqrt{CH}+CM\sqrt{BH}=AH\sqrt{BC}\) ( chia 2 vế cho \(\sqrt{BC}\ne0\) ) đpcm