K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(BC+AH\right)^2>\left(AB+AC\right)^2\)

\(\Leftrightarrow BC^2+2\cdot BC\cdot AH+AH^2>AB^2+AC^2+2\cdot AB\cdot AC\)

\(\Leftrightarrow BC^2+2\cdot AB\cdot AC+AH^2-BC^2-2\cdot AB\cdot AC>0\)

\(\Leftrightarrow AH^2>0\)(luôn đúng)

25 tháng 3 2017

Tam giác ABC vuông tại A nên \(BC^2=AB^2+AC^2\)\(\Rightarrow\)\(BC^2-AB^2-AC^2=0\)

Mặt khác \(2AH.BC=2AB.AC\) (vì cùng bằng diện tích tam giác ABC).

BĐT cần CM tương đương với (AH + BC)2 > (AB + AC)2 

hay \(AH^2+BC^2+2AH.BC>AB^2+AC^2+2AB.AC\)

\(\Leftrightarrow\)\(AH^2+\left(BC^2-AB^2-AC^2\right)+\left(2AH.BC-2AB.AC\right)>0\)

\(\Leftrightarrow\)\(AH^2>0\) (luôn đúng).

6 tháng 6 2016

Ta có: góc ABC = góc BAC + góc ACB (Tam giác abc vuông tại a)

=>      BC          = AB + AC (Quan hệ giữa góc và cạnh đối diện)

=>      BC + AH > AB + AC

Hay    AB + AC < BC + AH                

13 tháng 4 2018

ai trl trc thì mk cho hen!!!

13 tháng 4 2018

a, Xét hai tam giác ABH và tam giác ADH có

BH=HD(giả thiết)

góc BHA=góc DHA(=90 độ)

AH chung

Suy ra ABH=ADH(dpcm)

b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^

6 tháng 5 2017

Câu a và b mình trả lời hộ bạn rùi. Bây giờ mình sẽ giải câu c.

A B C H N M K

Trên cạnh AB lấy điểm M sao cho BM=BH. Trên AH lấy điểm K sao cho HK=HN. Nối M với K và H.

Xét tam giác MNH: ^MNH=900 => ^NMH+^NHM=900 (1)

Lại có: ^KHM+^BHM=^KHB=900 . Mà BM=BH => Tam giác HBM cân tại B 

=> ^BHM=^BMH => ^KHM+^BMH=900 (Thay vào biểu thức trên) hay ^KHM+^NMH=900 (2)

Từ (1) và (2) => ^NMH+^NHM=^KHM+^NMH=900 => ^NHM=^KHM=900-^NMH

Xét tam giác MNH và tam giác MKH có:

Cạnh MH chung

^NHM=^KHM       => Tam giác MNH=Tam giác MKH (c.g.c)

HN=HK

=> MNH=^MKH (2 góc tương ứng) . Mà MNH=900 => ^MKH=900 

MK vuông góc với AH => Tam giác MAK vuông tại K

=> AM là cạnh lớn nhất trong tam giác MAK (Quan hệ giữa góc và cạnh đối diện trong tam giác)

=> AM>AK => AB-BM>AH-HK (3) (Hệ thức cộng trừ đoạn thẳng)

Thay BM=BH và HK=HN theo cách vẽ vào (3), ta có:

AB-BH>AH-HN <=> AB>AH-HN+BH <=> HN+AB>AH+BH (Chuyển vế đổi dấu) (4)

Thay AH=HC vào (4), ta có: HN+AB>HC+HB => HN+AB>BC (đpcm)

--End--

  \(\Delta\)