Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(BC+AH\right)^2>\left(AB+AC\right)^2\)
\(\Leftrightarrow BC^2+2\cdot BC\cdot AH+AH^2>AB^2+AC^2+2\cdot AB\cdot AC\)
\(\Leftrightarrow BC^2+2\cdot AB\cdot AC+AH^2-BC^2-2\cdot AB\cdot AC>0\)
\(\Leftrightarrow AH^2>0\)(luôn đúng)
Tam giác ABC vuông tại A nên \(BC^2=AB^2+AC^2\)\(\Rightarrow\)\(BC^2-AB^2-AC^2=0\)
Mặt khác \(2AH.BC=2AB.AC\) (vì cùng bằng diện tích tam giác ABC).
BĐT cần CM tương đương với (AH + BC)2 > (AB + AC)2
hay \(AH^2+BC^2+2AH.BC>AB^2+AC^2+2AB.AC\)
\(\Leftrightarrow\)\(AH^2+\left(BC^2-AB^2-AC^2\right)+\left(2AH.BC-2AB.AC\right)>0\)
\(\Leftrightarrow\)\(AH^2>0\) (luôn đúng).
Ta có: góc ABC = góc BAC + góc ACB (Tam giác abc vuông tại a)
=> BC = AB + AC (Quan hệ giữa góc và cạnh đối diện)
=> BC + AH > AB + AC
Hay AB + AC < BC + AH
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
Câu a và b mình trả lời hộ bạn rùi. Bây giờ mình sẽ giải câu c.
A B C H N M K
Trên cạnh AB lấy điểm M sao cho BM=BH. Trên AH lấy điểm K sao cho HK=HN. Nối M với K và H.
Xét tam giác MNH: ^MNH=900 => ^NMH+^NHM=900 (1)
Lại có: ^KHM+^BHM=^KHB=900 . Mà BM=BH => Tam giác HBM cân tại B
=> ^BHM=^BMH => ^KHM+^BMH=900 (Thay vào biểu thức trên) hay ^KHM+^NMH=900 (2)
Từ (1) và (2) => ^NMH+^NHM=^KHM+^NMH=900 => ^NHM=^KHM=900-^NMH
Xét tam giác MNH và tam giác MKH có:
Cạnh MH chung
^NHM=^KHM => Tam giác MNH=Tam giác MKH (c.g.c)
HN=HK
=> MNH=^MKH (2 góc tương ứng) . Mà MNH=900 => ^MKH=900
MK vuông góc với AH => Tam giác MAK vuông tại K
=> AM là cạnh lớn nhất trong tam giác MAK (Quan hệ giữa góc và cạnh đối diện trong tam giác)
=> AM>AK => AB-BM>AH-HK (3) (Hệ thức cộng trừ đoạn thẳng)
Thay BM=BH và HK=HN theo cách vẽ vào (3), ta có:
AB-BH>AH-HN <=> AB>AH-HN+BH <=> HN+AB>AH+BH (Chuyển vế đổi dấu) (4)
Thay AH=HC vào (4), ta có: HN+AB>HC+HB => HN+AB>BC (đpcm)
--End--
\(\Delta\)