\(\frac{AB}{AC}=\frac{5}{6}\)và BC=1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ABCHÁp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :

AC2 = BC2 - AB2

AC2 = 5232=3(AC>0)52−32=3(AC>0)

Ta có : SABC=12AB.ACSABC=12AB.AC

Mà : SABC=12AH.BCSABC=12AH.BC

⇒ 12AB.AC=12AH.BC12AB.AC=12AH.BC

⇔ AH = AB.ACBC=3.45=2,4(cm)

ACBH

a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881 

=> AB = 881881

Lại có : BH.HC =  AH2

<=> HC.25 = 162

<=> HC.25 = 256

<=> HC = 256 : 25 = 10,24

Ta có : BC = HC + BH = 10,24 + 25 = 35,24 

Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576

=> AC = 360,8576

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

28 tháng 8 2021

Ta có : \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Theo định lí Pytago tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow\left(\frac{3}{4}AC\right)^2+AC^2=225\Rightarrow AC=12\)cm 

\(\Rightarrow AB=\frac{3}{4}AC=\frac{3}{4}.12=9\)cm

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thúc : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{81}{15}=\frac{27}{5}\)cm 

\(\Rightarrow CH=BC-BH=15-\frac{27}{5}=\frac{48}{5}\)cm 

30 tháng 9 2018

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm