Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
A B C
a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:
BC2 = AB2 + AC2
BC2 = 212 + 722
BC2 = 5625
BC = 75 (cm)
b, Tam giác ABC vuông tại A, đường cao AH
Ta có: AB2 = BH . BC (định lí 1)
212 = BH . 75
BH = 441 : 75
BH = 5,88 (cm)
Ta có : BC = BH + HC
75 = 5,88 + HC
HC = 75 - 5,88
HC = 69,12 (cm)
Ta có: AH2 = BH . HC
AH2 = 5,88 . 69,12
AH2 = 406,4256
AH = 20,16 (cm)
c, (Bạn tự vẽ tia p/g nha)
Theo tính chất đường phân giác góc B ta có:
=> AD/ DC = AB/ BC
=> AD/ AB = DC/BC
=> AD/ 21 = DC/ 75
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4
=> AD/ 21 = 3/4 => AD = 15,75 (cm)
=> DC/ 75 = 3/4 => DC = 56, 25 (cm)
Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33
CHÚC BẠN HỌC TỐT !!!
a: \(BC=\sqrt{4.5^2+6^2}=7.5\left(cm\right)\)
AH=4,5*6/7,5=3,6(cm)
BH=AB^2/BC=4,5^2/7,5=2,7cm
CH=7,5-2,7=4,8cm
b: BH/CH=1/4
nên CH=4BH
Ta có; AH^2=HB*HC
=>4HB^2=14^2=196
=>HB=7cm
=>CH=28cm
=>BC=35cm; \(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
=>\(C=21\sqrt{5}+35\left(cm\right)\)