K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

A B C H 24 30

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=900-576=324\Rightarrow AC=18\)cm 

* Áp dụng hệ thức :

 \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{24.18}{30}=\frac{72}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{576}{30}=\frac{96}{5}\)cm 

\(CH=BC-BH=30-\frac{96}{5}=\frac{54}{5}\)cm

26 tháng 8 2021

26 tháng 8 2021

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

9 tháng 7 2016

Áp dụng định lí Pi ta go vào tam giác vuông AHB ta có

\(AB^2=AH^2+BH^2\) =>\(BH^2=AB^2-AH^2\)=>\(BH=\sqrt{30^2-24^2}=\sqrt{324}=18\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AH^2=BH.CH\)=>\(HC=\frac{AH^2}{BH}\)=>\(HC=\frac{24^2}{18}=\frac{576}{18}=32\left(cm\right)\)

Ta có  \(BC=HC+HB\) => \(BC=32+18=50\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AC^2=BC.HC\)

=>\(AC=\sqrt{BC.HC}=\sqrt{50.32}=\sqrt{1600}=40\left(cm\right)\)*Chỗ này bạn dùng Pitago tính cũng được nha*

 

 

 

9 tháng 7 2016

Ta có góc HBD+ góc ABH = 90 độ mà góc ACH + góc ABH = 90 độ 

=> góc HBD = góc ACH 

Xét tam giác BHD và tam giác CHA có 

góc BHD = góc CHA = 90 độ

góc HBD = góc ACH (chứng minh trên)

Do đó tam giác BHD ~ tam giác CHA

=> \(\frac{BD}{BH}=\frac{AC}{HC}\)

=>\(BD=\frac{AC.BH}{HC}=\frac{18.40}{32}=\frac{720}{32}=22,5\left(cm\right)\)

 

12 tháng 11 2021

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

12 tháng 11 2021

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

13 tháng 9 2023

Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:

BC2=AB2+AC2

<=>BC2=32+42

<=>BC2=25

<=>BC=5(cm)

Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:

AB.AC=BC.AH

<=>3.4=5.AH

<=> AH=\(\dfrac{3.4}{5}\)

<=>AH=2,4(cm)

Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:

AB2=AH2+BH2

<=>BH2=32-2,42

<=>BH2=3,24

<=>BH=1,8(cm)
Ta có:BC=BH+CH

=>CH=BC-BH=5-1,8=3,2(cm)

Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm

 

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

7 tháng 9 2016

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH.CH\Rightarrow x\left(25-x\right)=144\Leftrightarrow x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=9\\x=16\end{array}\right.\) (tm)

Nếu BH = 9 cm thì CH = 16 cm\(\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

9 tháng 9 2016

Gỉa sử \(\Delta ABC\) có AB>AC

\(AB.AC=AH.BC=12.25=300\)

\(\Leftrightarrow2AB.AC=2.300=600\)

Áp dụng định lý Pytago cho \(\Delta ABC\) vuông tại A ta có:

\(AB^2+AC^2=BC^2=25^2=625\) (1)

\(\left(1\right)\Rightarrow AB^2+AC^2-2AB.AC=625-600\)

\(\Leftrightarrow\left(AB-AC\right)^2=25\Leftrightarrow AB-AC=5\)   (a)  (Vì AB>AC \(\Rightarrow AB-AC>0\))

\(\left(1\right)\Rightarrow AB^2+AC^2+2AB.AC=600+625=1225\)

\(\Leftrightarrow\left(AB+AC\right)^2=1225\Rightarrow AB+AC=35\) (b)

Cộng vế vs vế của (a) và (b) ta được: \(2AB=40\Rightarrow AB=20\)

                                                         \(\Rightarrow AC=AB-5=20-5=15\)

Xét \(\Delta ABC\) vuông tại A, \(AH\perp BC\)\(\Rightarrow\) theo hệ thức lượng trong tam giác vuông ta có:

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{20^2}{25}=16\)

\(\Rightarrow CH=BC-BH=25-16=9\)

 

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

12 tháng 9 2021