K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

a) 

Xét \(\Delta\)HBA và \(\Delta\)HAC 

có: ^BHA = ^AHC = 90 độ 

^HBA = ^HAC ( cùng phụ ^HAB ) 

=> \(\Delta\)HBA ~ \(\Delta\)HAC 

b) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)cm

=> \(S\left(ABC\right)=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

=> \(AH=\frac{6.8}{10}=4,8\)cm

c) Tích chất phân giác

=> \(\frac{AB}{BC}=\frac{AD}{DC}\Rightarrow\frac{AD}{6}=\frac{DC}{10}=\frac{AD+DC}{6+10}=\frac{8}{16}=\frac{1}{2}\)

=> AD = 3 cm; DC = 5 cm 

Theo pi ta go trong \(\Delta\)ADB => \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=3\sqrt{5}\)

17 tháng 6 2020

                                                A B C D H

a) \(\Delta ABC\)vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)

\(\Delta AHC\)vuông tại H \(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)

\(\Rightarrow\widehat{HAC}=\widehat{ABC}\)

Xét \(\Delta HBA\)và \(\Delta HAC\)có:+) \(\widehat{AHB}=\widehat{AHC}=90^o\)

                                                    +) \(\widehat{HAC}=\widehat{ABC}\)

\(\Rightarrow\Delta HBA~\Delta HAC\left(g-g\right)\)( đpcm )

b) \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Xét \(\Delta ABC\)có: \(S=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)

c) \(\Delta ABC\)có BD là phân giác \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{6}{10}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)

\(\Rightarrow DC=5.1=5\)\(AD=3.1=3\)

Xét \(\Delta ABD\)vuông tại A \(\Rightarrow AB^2+AD^2=BD^2\)( định lý Pytago )

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=\sqrt{54}=3\sqrt{6}\)

20 tháng 12 2019

lhHua1Q.png

Dễ dàng chứng minh AIHK là hình chữ nhật nên AH=IK.

b

Gọi O là giao điểm của IK và AH.

Do AM là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên MA=MC

\(\Rightarrow\Delta\)MAC cân tại M => \(\widehat{MAC}=\widehat{MCA}\left(1\right)\)

Do O là giao điểm 2 đường chéo của hình chữ nhật nên OA=OK => tam giác OAK cân tại O \(\Rightarrow\widehat{OKA}=\widehat{OAK}\left(2\right)\)

Cộng vế theo vế của (1);(2) ta có:

\(\widehat{MAK}+\widehat{OKA}=\widehat{MCK}+\widehat{OAK}=\widehat{AHC}=90^0\)

\(\Rightarrowđpcm\)

c

AIHK là hình vuông nên AH là đường phân giác.Mà AH là đường cao nên tam giác ABC cân tại A.

Mà tam giác ABC vuông tại A nên ABC vuông cân tại A.

Vậy để tứ giác AIHK là hình vuông thì tam giác ABC phải là tam giác vuông cân.

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

27 tháng 3 2019

A B C D E

a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)

\(BD\)chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b, Theo câu a, ta có :

\(\Delta ABD=\Delta EBD\left(cmt\right)\)

\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )

\(\Rightarrow\Delta ABE\)là tam giác cân

Lại có : \(\widehat{B}=60^o\)

\(\Rightarrow\Delta ABE\)là tam giác đều 

c, Do : \(\Delta ABE\)đều 

\(\Rightarrow AB=BE=5\left(cm\right)\)

Do : \(BD\)là phân giác của \(\widehat{B}\)

\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)

Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)

Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)

\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)

Xét : \(\Delta BDE\)và \(\Delta CDE\)có : 

\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)

\(DE\)chung

\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)

\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)

\(\Rightarrow BE=CE=5\left(cm\right)\)

\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)

Vậy : \(BC=10\left(cm\right)\)

19 tháng 3 2020

A B C D E A' B' C'

+ Dựng ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3

Trên AB lấy D, trên AC lấy E sao cho \(AD=\frac{2}{3}AB;AE=\frac{2}{3}AC\)

Suy ra : \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{2}{3}\)

Khi đó theo định lý Ta-let đảo ta suy ra DE // BC

⇒ ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3.

+ Dựng ΔA’B’C’ = ΔADE

Vẽ đoạn A’B’ = AD.

Dựng góc  \(\widehat{A'B'x}=\widehat{ADE}\)

Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.

Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)

Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:

\(k_1=\frac{A'B'}{AD}=1\)

Mà tam giác ADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lá»p 8tam giác ABC theo tỉ số

\(k_2=\frac{AD}{AB}=\frac{2}{3}\)

=> Tam giác A'B'C' Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lá»p 8tam giác ABC theo tỉ số 

\(k=k_1.k_2=\frac{A'B'}{AB}=\frac{2}{3}\)