Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác AEDF có: góc BAC=90\(^o\)
góc DFA=90\(^o\)
góc DEF=90\(^o\)
=> Tứ giác AEDF là hình chữ nhật
b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)
=> Δ ABD cân tại D
mà DE là đường cao( do AB là đường trung trực của DM)
=> DE là đường trung tuyến
=> EA=1/2AB=> EA=3 (cm)
CM tương tự đối với Δ ADC
từ đó suy ra: FA=1/2AC=> FA=4 (cm)
\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)
c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)
E là trung điểm của đường chéo DM
=> ADBM là hình bình hành
mà MD vuông góc với AB
=> ADBM là hình thoi
d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi
Ta có: MA=AD( 2 cạnh của hình thoi)
NA = AD( 2 cạnh của hình thoi)
=> MA=NA
mà MA=BD
=> NA=BD
Ta có: NA//DC( cạnh đối của hình thoi)
=> NA//BD( vì BD và DC trùng nhau)
tứ giác BAND có: NA=BD
NA//BD
=> BADN là hình bình hành
=> AB=DN
Để ADCN là hình vương
<=> DN=AC
<=> AB=AC( AB=DN)
<=> Δ ABC cân tại A
mà Δ ABC vuông
=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A
HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ
a)
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
D là trung điểm của BC
mà DF // AB (DF _I_ AC; AB _I_ AC)
=> F là trung điểm của AC
mà F là trung điểm của ND (N đối xứng D qua AC)
=> ADCN là hình bình hành
mà AC _I_ ND (N đối xứng D qua AC)
=> ADCN là hình thoi
=> AN // BC
mà AM // BC (ADBM là hình thoi)
=> M, A, N thẳng hàng
AN = CD (ADCN là hình thoi)
AM = BD (ADBM là hình thoi)
=> CD = BD (D là trung điểm của BC)
=> AM = AN
=> M đối xứng N qua A
d)
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a. Điểm M và điểm D đối xứng qua trục AB
⇒ AB là đường trung trực của đoạn thẳng MD
⇒ AB ⊥ DM
⇒ ˆAED=900AED^=900
Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN
⇒ AC ⊥ DN ⇒ˆAFD=900⇒AFD^=900
ˆEAF=900EAF^=900 (gt)
Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)
b. Tứ giác AEDF là hình chữ nhật ⇒ DE // AC; DF // AB
Trong ∆ ABC ta có: DB = DC (gt)
DE // AC
Suy ra: AE = EB (tính chất đường trung bình tam giác); DF// AB
Suy ra: AF = FC (tính chất đường trung bình của tam giác)
Xét tứ giác ADBM : AE = EB (chứng minh trên)
ED = EM (vì AB là trung trực DM)
Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
AB ⊥ DM
Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)
Xét tứ giác ADCN:
AF = FC (chứng minh trên)
DF = FN (vì AC là đường trung trực DN)
Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
AC ⊥ DN
Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)
c. Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD
hay AM // BC và AM = AD (1)
Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN
hay AN // BC và AN = AD (2)
Từ (1) và (2) suy ra: AM trung với AN hay M, A, N thẳng hàng
Và AM = AN nên A là trung điểm của MN
Vậy điểm M và điểm N đối xứng với nhau qua điểm A
d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF
Ta có: AE = 1212AB ; AF =1212AC
nên AE = AF AB = AC
Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.