Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E
Xét tam giác vuông ABC, ta có:
BC2 = AB2+ AC2 ( theo định lý py-ta-go)
BC2 = 242+ 322
BC2 = 1600
BC = 40(cm)
EC = BC : 2 = 40 : 2 = 20(cm)
Xét tam giác vuông ACB và tam giác vuông ECD có:
Có \(\widehat{A}\) = \(\widehat{E}\) = 90o
\(\widehat{C}\) chung
=> Tam giác ACB = tam giác ECD (g.g)
=> AC/EC = AB/DE
=> DE = AB.EC/AC = 15cm
Vậy DE = 15cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha.
a, Ta có: BC là đường trung trực của \(\Delta ABC\)\(\Rightarrow BM=MC,\widehat{DMC}=90^o\)
\(\Delta ABC,\widehat{BAC}=90^o\)có AM là trung tuyến của \(\Delta ABC\)\(\Rightarrow AM=BM=MC=\frac{BC}{2}\)
\(\Delta AMC\)có: \(AM=MC\left(cmt\right)\Rightarrow\Delta AMC\)cân tại M
b, \(\Delta ABC\)và \(\Delta MDC\)có:
\(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)chung
\(\Rightarrow \Delta ABC \sim \Delta MDC (g-g)\)
c, \(\Delta BEC\)có: \(EM\perp BC\left(gt\right)\)
\(AC\perp AB\left(gt\right)\)
\(EM \cap AC \) \(=\left\{D\right\}\)
\(\Rightarrow D\)là trực tâm của \(\Delta BEC\)\(\Rightarrow BD\perp CE\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
a) Xét tam giác ABC vuông tại A, có :
^B + ^C = 90 (định lý)
<=> ^B + 15 = 90 (Thay số)
<=> ^B = 75
Xét tam giác MBC, có MD vừa là đường trung trực, vừa là đường cao:
MD là đường trung trực của BC
=>MB=MC(t/c đường trung trực của đoạn thẳng)
=>MBC cân tại M (dhnb)
=> ^MBC=15
Xét tam giác ABC, có:
^ABM + ^MBC = ^ABC(MB thuộc ABC)
<=>^ABM + 15 = 75(Thay số)
<=>^ABM = 60
Xét tam giác ABM vuông tại A, có :
^ABM + ^AMB = 90 (Định lý)
<=>60+ ^AMB = 90
<=> ^AMB = 30
=> AB = 1/2 BM (t/c tam giác vuông)
<=> 2AB = BM
lại có AB = c ; MB = MC (cmt)
=> 2c = MC hay MC = 2c (đpcm)
a) Xét tam giác ABC vuông tại A, có : ^B + ^C = 90 (định lý) <=> ^B + 15 = 90 (Thay số) <=> ^B = 75 Xét tam giác MBC, có MD vừa là đường trung trực, vừa là đường cao: MD là đường trung trực của BC =>MB=MC(t/c đường trung trực của đoạn thẳng) =>MBC cân tại M (dhnb) => ^MBC=15 Xét tam giác ABC, có: ^ABM + ^MBC = ^ABC(MB thuộc ABC) <=>^ABM + 15 = 75(Thay số) <=>^ABM = 60 Xét tam giác ABM vuông tại A, có : ^ABM + ^AMB = 90 (Định lý) <=>60+ ^AMB = 90 <=> ^AMB = 30 => AB = 1/2 BM (t/c tam giác vuông) <=> 2AB = BM lại có AB = c ; MB = MC (cmt) => 2c = MC hay MC = 2c (đpcm)