Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ nên đẩy ý b) lên trước vì đã tính AC đâu mà có tỉ số :D
a) Áp dụng định lí Pythagoras cho ΔvuôngABC ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
b) Tỉ số hai đoạn thẳng AB và AC : AB/AC = 9/12 = 3/4
c) Vì CD là phân giác của ^C nên theo tính chất đường phân giác trong tam giác ta có : \(\frac{AD}{AC}=\frac{BD}{BC}\)
Áp dụng tính chất dãy tí số bằng nhau ta có : \(\frac{AD}{AC}=\frac{BD}{BC}=\frac{AD+BD}{AC+BC}=\frac{AB}{AC+BC}=\frac{9}{12+15}=\frac{1}{3}\)
=> \(\hept{\begin{cases}\frac{AD}{AC}=\frac{1}{3}\\\frac{BD}{BC}=\frac{1}{3}\end{cases}}\Rightarrow\hept{\begin{cases}AD=\frac{1}{3}AC=4\left(cm\right)\\BC=\frac{1}{3}BC=5\left(cm\right)\end{cases}}\)
a: BC=BD+CD
=15+20
=35(cm)
Xét ΔABC có AD là phân giác
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)
=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)
=>AB=3k; AC=4k
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)
=>\(25k^2=1225\)
=>\(k^2=49\)
=>k=7
=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)
b:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
\(\dfrac{BD}{BC}=\dfrac{15}{35}=\dfrac{3}{7}\)
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot294=126\left(cm^2\right)\)
Ta có: \(S_{ABD}+S_{ACD}=S_{ABC}\)
=>\(S_{ACD}+126=294\)
=>\(S_{ACD}=168\left(cm^2\right)\)
1: Xét tứ giác ABDE có
DE//AB
góc EAB=90 độ
=>ABDE là hình thang vuông
XétΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
2: AC=căn 15^2-9^2=12cm
S ABC=1/2*AB*AC=1/2*12*9=54cm2
Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
=>CD/BD=4/3
=>CD/BC=4/7
ΔCED đồng dạng với ΔCAB
=>ED/AB=CD/CB=4/7
=>ED=9*4/7=36/7cm
3: Gọi giao của CM với ED làI
Xét ΔCAM có EI//AM
nên EI/AM=CI/CM
Xét ΔCMB có ID//MB
nên ID/MB=CI/CM
=>EI/AM=ID/MB
mà AM=MB
nên EI=ID
=>I là trung điểm của ED
vi tam giac ABC co AD la pg cua goc A => AB/AC = BD/DC (t/c) =>AB^2/AC^2 = BD^2/DC^2
vi BC=BD+DC=15+20=35
vi tam giac ABC vuong =>AB^2 = BC^2 -AC^2 (py ta go)
=>BC^2 - AC^2/AC^2 = BD^2/DC^2 =>BC^2 x DC^2 - AC^2 x DC^2 =BD^2 x AC^2
hay 35^2 x 20^2 -AC^2 x 20^2 = 15^2 x AC^2
=>490000 = 225AC^2 + 400AC^2 =>625AC^2 =490000 =>AC^2 =784 =>AC=28cm
AB^2 = BC^2 - AC^2 = 35^2 -784 =441cm =>AB=21cm
a: BC=25cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)
Do đó: AD=7,5cm; CD=12,5(cm)
b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc ADI=góc AID
hay ΔAID cân tại A
A B C D
Xét \(\Delta ABC\)vuông tại A có :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Xét \(\Delta ABC\)có phân giác BD
\(\Rightarrow\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{9+15}=\frac{1}{2}\)
\(\Rightarrow\frac{AD}{9}=\frac{1}{2}\)
\(\Rightarrow AD=\frac{1.9}{2}=4,5\left(cm\right)\)
Vậy AD = 4,5cm
A B C D 9 15
Áp dụng định lí Pytago cho tam giác vuông ABC ta có :
\(BC^2-AB^2=AC^2=225-81=144\Rightarrow AC=12\)cm
Vì BD là đường phân giác ^B nên : \(\frac{AB}{BC}=\frac{AD}{DC}\)( tc )
\(\Rightarrow\frac{DC}{BC}=\frac{AD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{DC}{BC}=\frac{AD}{AB}=\frac{DC+AD}{BC+AB}=\frac{AC}{15+9}=\frac{12}{24}=\frac{1}{2}\)
\(\Rightarrow\frac{AD}{AB}=\frac{1}{2}\Rightarrow AD=\frac{1}{2}AB=\frac{1}{2}.9=\frac{9}{2}\)cm