Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C M
Nối BM
Xét tam giác BMD vuông tại D, có: BD2 = BM2 - MD2 (1)
Xét tam giác MCD vuông tại D, có: DC2 = MC2- MD2 (2)
Từ (1) và (2) => BD2 - DC2 = BM2- MD2 - MC2 + MD2 = BM2 - MC2 = BM2 - AM2 (vì AM=CM) = AB2
=> AB2 = BD2- DC2 (đpcm)
A B C M D
Ta có : \(BD^2-CD^2=\left(MB^2-MD^2\right)-\left(MC^2-MD^2\right)=MB^2-MC^2=MB^2-MA^2=AB^2\) ( Vì MA = MB)
Vậy \(AB^2=BD^2-CD^2\)
Ta có : 2MC = AC(Vì M là trung điểm của AC)
=> 2MC.AC =AC2
Ta có ; Tam giác MDC đồng dạng tam giác BAC nên
(MC/BC) = (DC/AC)
=> MC.AC = BC.DC
=> 2.MC.AC = 2BC.Dc
=> ac2 = 2BC.DC
=> BC 2 - AC 2 = BC 2 - 2Bc - dc
=> AB2 = BC.(BC - CD - CD ) = Bc . (BD-Dc) = (BD +DC) .(BD - CD)
=> AB2 = BD2 - CD2 (ĐPCM)
Mk ko biết vẽ hình đâu nên mong bạn thứ lỗi
Bài 2. A B C M D E F
Áp dụng định lí Pytago ta có :
\(AM^2=AF^2+FM^2=AE^2+ME^2\)
\(BM^2=BD^2+MD^2=MF^2+BF^2\)
\(MC^2=ME^2+EC^2=MD^2+DC^2\)
\(\Rightarrow AF^2+FM^2+BD^2+MD^2+ME^2+EC^2=AE^2+ME^2+MF^2+BF^2+MD^2+DC^2\)
\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Vẽ MD vuông góc với BC ( D thuộc BC ) . Chứng minh : AB2 = BD2 - CD2 .