Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: AMHN là hình chữ nhật
=>AM//HN và AM=HN
AM=HN
HN=NE
Do đó: AM=NE
AM//HN
\(N\in HE\)
Do đó: AM//NE
Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó: AMNE là hình bình hành
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
=>AM//HN và AM=HN
Ta có: AM//HN
N\(\in\)HK
Do đó: AM//KN
Ta có: AM=HN
HN=KN
Do đó: AM=KN
Xét tứ giác AMNK có
AM//NK
AM=NK
Do đó: AMNK là hình bình hành
a) ta có góc DMA=MAN=DAN=900
=> tứ giác AMDN là hình chữ nhật
b) ta có DB=DC VÀ DN // MA ( do MDNA là hình chữ nhật )
=> DN là đường trung bình của tam giác ABC
--> AN=NC hay N là trung điểm của AC
c) ta có tứ giác ADCE có 2 đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Hình bình hành ADCE có 2 đường chéo vuông góc với nhau nên là hình thoi
d)
a)Xét tứ giác AMDN ,có:
góc MAN=90(ΔABC vuông tại A)
góc AMD=90(DM⊥AB)
góc AND=90(DN⊥AC)
⇒Tứ giác AMDN là hình vuông
b)Xét △ABC vuông tại A,có:
AD là đường trung tuyến ứng vs cạnh huyền BC
⇒AD=1/2 BC hay AD=DC
Xét △ADC có:
AD=DC(cmt)
⇒△ADC là tam giác cân tại D
Xét △ADC cân tại D,có:
AN là đường cao (DN⊥AC)
⇒N là trung điểm AC
c)Xét tứ giác ADCE,có:
N là trung điểm DE
N là trung điểm AC
mà DE và AC là 2 đg chéo cắt nhau tại N
⇒tứ giác ADCE là hình bình hành
Xét hbh ADCE ,có:
ND⊥AC
⇒hbh ADCE là hình thoi
Xét hình chữ nhật AMDN ,có:
DN=AN hay DN=AN=NE=NC hay DE=AC
Xét hình thoi ADCE có :
DE=AC
mà DE và AC là 2 đg chéo
⇒ADCE là hình vuông
d)Giả sử tứ giác ABCE là hình thang cân
⇔góc B=góc C
⇔△ABC là tam giác vuông cân tại A
Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A
a)Xét tứ giác AMDN ,có:
góc MAN=90(ΔABC vuông tại A)
góc AMD=90(DM⊥AB)
góc AND=90(DN⊥AC)
⇒Tứ giác AMDN là hình vuông
b)Xét △ABC vuông tại A,có:
AD là đường trung tuyến ứng vs cạnh huyền BC
⇒AD=1/2 BC hay AD=DC
Xét △ADC có:
AD=DC(cmt)
⇒△ADC là tam giác cân tại D
Xét △ADC cân tại D,có:
AN là đường cao (DN⊥AC)
⇒N là trung điểm AC
c)Xét tứ giác ADCE,có:
N là trung điểm DE
N là trung điểm AC
mà DE và AC là 2 đg chéo cắt nhau tại N
⇒tứ giác ADCE là hình bình hành
Xét hbh ADCE ,có:
ND⊥AC
⇒hbh ADCE là hình thoi
Xét hình chữ nhật AMDN ,có:
DN=AN hay DN=AN=NE=NC hay DE=AC
Xét hình thoi ADCE có :
DE=AC
mà DE và AC là 2 đg chéo
⇒ADCE là hình vuông
d)Giả sử tứ giác ABCE là hình thang cân
⇔góc B=góc C
⇔△ABC là tam giác vuông cân tại A
Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A
a)Xét tứ giác AMDN có: góc AMD=900
góc MAN=900
góc DNA=900
=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)
b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC
=>AD là đường trung tuyến ứng với cạnh huyền BC
=>AD=BD=CD=BC/2
=> tg ACD cân tại D
Xét tg ACD cân tại D có: DN là đường cao
=>DN là đường trung tuyến của tam giác ADC
=>N là trung điểm của AC
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó; E là trung điểm của AB
Xét ΔBAC có
D là trung điểm của BC
DF//AB
Do đó: F là trung điểm của AC
Xét tứ giác ADBM có
E là trung điểm chung của AB và DM
=>ADBM là hình bình hành
c: Xét tứ giác ADCN có
F là trung điểm chung của AC và DN
=>ADCN là hình bình hành
=>AN//CD và AN=CD
Ta có: ADBM là hình bình hành
=>AM//BD và AM=BD
Ta có: AN//CD
AM//BD
mà B,D,C thẳng hàng
nên AN//BC và AM//BC
mà AN,AM có điểm chung là A
nên N,A,M thẳng hàng
Ta có: AM=BD
AN=CD
mà BD=DC
nên AM=AN
mà M,A,N thẳng hàng
nên A là trung điểm của MN
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét ΔABC có
H là trung điểm của BC
HN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
Hình bình hành AHBP có AB\(\perp\)HP
nên AHBP là hình thoi
Để AHBP là hình vuông thì \(\widehat{HBP}=90^0\)
AHBP là hình thoi nên BA là phân giác của góc HBP
=>\(\widehat{HBA}=\dfrac{1}{2}\cdot\widehat{HBP}=45^0\)
=>\(\widehat{ABC}=45^0\)