Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{C}=90^0-60^0=30^0\)
Xét ΔABC có \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó: ΔAHC=ΔDHC
c: Xét ΔBAC và ΔBDC có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: \(\widehat{C}=90^0-60^0=30^0\)
Xét ΔABC có \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó: ΔAHC=ΔDHC
c: Xét ΔBAC và ΔBDC có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
1) Áp dụng t/c tổng 3 góc trog 1 tg ta có:
ˆA+ˆB+ˆC=180oA^+B^+C^=180o (các góc trog ΔABCΔABC)
⇒90o+60o+ˆC=180o⇒90o+60o+C^=180o
⇒ˆC=30o⇒C^=30o
Khi đó: ˆC<ˆB(30<60)C^<B^(30<60)
⇒AB<AC⇒AB<AC (quan hệ góc và cạnh đối diện)
⇒HB<HC⇒HB<HC (quan hệ đường xiên −− hình chiếu)
2) Có vấn đề.
3) Xét ΔACHΔACH vuông tại H và ΔDCHΔDCH vuông tại H có:
CHCH chung
AH=DH(gt)AH=DH(gt)
⇒ΔACH=ΔDCH(cgv−cgv)⇒ΔACH=ΔDCH(cgv−cgv)
4) Vì ΔACH=ΔDCH(3)ΔACH=ΔDCH(3)
nên ˆACH=ˆDCB=30oACH^=DCB^=30o
C/m tương tự câu 3): ΔABH=ΔDBH(cgv−cgv)ΔABH=ΔDBH(cgv−cgv)
⇒ˆABH=ˆDBC=60o⇒ABH^=DBC^=60o
Áp dụng tc tổng 3 góc trog 1 tg ta có:
ˆBDC+ˆDBC+ˆDCB=180oBDC^+DBC^+DCB^=180o
⇒ˆBDC=180o−60o−30o⇒BDC^=180o−60o−30o
⇒ˆBDC=90o