K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Có: AM là trung tuyến ΔABC

\(\Rightarrow\) M là trung điểm BC

\(\Rightarrow MB=MC\)

Xét ΔABM và ΔCDM có:

\(MB=MC\left(cmt\right)\)

\(\widehat{AMB}=\widehat{CMD}\left(đ^2\right)\)

\(MA=MD\)

\(\Rightarrow\) ΔABM = ΔCDM ( c.g.c )

\(\Rightarrow\widehat{BAM}=\widehat{DCM}\left(2gtu\right)\)

\(\Rightarrow AB//CD\)

Mà \(BA⊥AC\)

\(\Rightarrow DC⊥AC\)

b, Có: ΔABM = ΔCDM ( cmt )

\(\Rightarrow\left\{{}\begin{matrix}BA=DC\left(2ctu\right)\\\widehat{ABM}=\widehat{CDM}\left(2gtu\right)\end{matrix}\right.\)

Xét ΔABC và ΔCDA có:

\(\widehat{ABM}=\widehat{CDM}\left(cmt\right)\)

\(AB=CD\left(cmt\right)\)

\(\widehat{BAC}=\widehat{DCA}\left(=90^o\right)\)

\(\Rightarrow\) ΔABC = ΔCDA ( g.c.g )

\(\Rightarrow BC=DA\left(2ctu\right)\)

Có: M là trung điểm BC

      M là trung điểm AD ( MA = MD )

Mà \(BC=AD\)

\(\Rightarrow MA=MB\)

\(\Rightarrow\) ΔABM cân tại M

Mà \(\widehat{ABM=60^o}\)

\(\Rightarrow\) ΔABM là tam giác đều.

 

 

6 tháng 1 2017

a) xét tg ABM & tg DCM có

MB=MC (vì M là trung điểm BC)

AMB^ =DMC^(2 GÓC ĐỐI ĐỈNH)

MA =MD (GT)

=) tg ABM=tg DCM(c.g.c)

vậy.......

b) Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)

Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC

vậy..... 

c) bó tay

Bạn o0o đồ khùng o0o làm đúng rồi

Bạn avt562206_60by60.jpgNgọc My Lovely làm theo cách bạn ấy nha

Ai thấy mình nói đúng thì nha

16 tháng 4 2017

a) xét tam giac ABM và tam giac CDM  có :

BM=CM (gt)

AM=DM (gt)

góc BMA= góc DMC (đối đỉnh)

=>tam giác ABM= tam giác CDM (c.g.c)

Mà góc BAM = góc CDM (vì nằm ở vị trí so le trong)

=>AB//DC

16 tháng 4 2017

bn k cho mk trươc đi rồi mk giải tiếp cho 

8 tháng 3 2020

A D M H E N I

Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A

suy ra góc AMN=góc ANM = 300

Xét tam giác AHM và tam giác AHN

có AH chung

góc AHM = góc AHN = 900

AM=AN (vì tam giác AMN cân tại A)

suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)

suy ra góc MAH=góc HAN (hai góc tương ứng)

suy ra AH là tia phân giác của góc MAN

b) Xét tam giác vuong AHD và tam giác vuông AhE

có AH chung

góc hAD=góc HAE (CMT)

suy ra tam giác AHD =  tam giác  AHE ( cạnh huyền-góc nhọn)  (1)

suy ra AD=AE suy ra tam giác ADE cân tại A

suy ra góc ADE=góc AED=300

suy ra góc ADE = góc AMN = 300

mà góc ADE đồng vị với góc AMN

suy ra DE//MN

c)  tam giác HEN vuông tại E suy ra góc EHN = 600

tam giác HDM vuông tại D suy ra góc DHM = 600

mà góc DHM + góc DHE + góc EHN = 1800

suy ra góc DHE = 600   (2) 

Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H  (3)

Từ (2) và (3) suy ra tam giác DHE đều

d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600

góc IAN kề bù với góc NAM

suy ra góc NAI = 600

tam giác ANI có góc AIN=góc ANI=góc IAN = 600

suy ra tam giác ANI đều

suy ra AI = NI = 10cm

a) xét tam giác ABM và tam giác DCM có:

          MA = MD (gt)

         góc AMB = góc CMD (đối đỉnh)

            BM = CM (gt)

=> tam giác ABM = tam giác DCM (c.g.c)

b) vì tam giác ABM = tam giác DCm (câu a)

=> AB = DC (cạnh tương ứng)

    góc ABM = góc MCD (góc tương ứng)

mà góc ABM và góc MCD ở vị trí so le trong

=> AB // DC