Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
K
Hình hơi xấu hì hì! tự viết GT KL nha!
Cm:
a) \(\Delta ABC\)cân tại A (gt)
=> AB=AC
=>AC=4cm (vì AB=4cm(gt))
Vậy AC=4cm.
b) \(\Delta ABC\)cân tại A (gt)
=>\(\widehat{B}=\widehat{C}\)
\(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(ĐL tổng 3 góc trong 1 tam giác)
\(\Rightarrow60^0+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
=> \(\Delta ABC\)đều.
c) Xét \(\Delta ABM\)và \(\Delta ACM\)có:
AM chung
AB=AC
BM=CM
=>\(\Delta ABM\)=\(\Delta ACM\) (c.c.c)
(đpcm)
d) Vì \(\Delta ABM\)=\(\Delta ACM\)(cmt)
=>\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(2 góc kề bù)
=>\(\widehat{AMB}=\widehat{AMC}=90^0\)
=> \(AM⊥BC\)(Đpcm)
e)Xét \(\Delta BHM\)và \(\Delta CKM\)có:
\(\widehat{BHM}=\widehat{CKM}=90^0\)
BM=CM
\(\widehat{B}=\widehat{C}\)
=>\(\Delta BHM\)=\(\Delta CKM\)(cạnh huyền-góc nhọn)
=>MH=MK(2 cạnh t/ứ)
(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C I M K
a, Xét tam giác vuông MHC có :
\(\widehat{CMH}+\widehat{HCM}=90^o\)
Xét tam giác vuông ABC có:
\(\widehat{HIB}+\widehat{HCM}=90^o\)
\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)
Xét 2 tam giác : KHM và IHB
MH = HB ( gt )
\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)
\(\widehat{MKH}=\widehat{HIB}=90^o\)
\(\Rightarrow\Delta KHM=\Delta IHB\)
b, \(\Rightarrow HK=HI\)
Xét 2 tam giác : KHA và IHA
KM = IH ( cm a )
AN chung
\(\widehat{HKA}=\widehat{AIM}=90^o\)
\(\Rightarrow\Delta KHA=\Delta IHA\)
\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)
Vậy : AH là tia phân giác góc BAC
a, xet △ vuong mhc co ∠cmh + ∠hcm = 90 do xet △ vuong abc co ∠hbi + ∠hcm = 90 do suy ra ∠cmh = ∠hbi xet △ BHI va △ MHK co ∠CMH = ∠HBI [c/m tr] HM = BH [gt] ∠BIH = ∠MKH [=90 do] ➩ △ BHI = △ MHK [ch-gn] b, tu a co △bhi = △mhk ➩ ih = kh xet △aih va △akh co ah chung ih = kh [c/m tr] ∠aih = ∠akh [= 90 do] ➩ △aih = △kah [ch-cgv] ➩ ∠iah = ∠kah ➩ ah la p/g cua ∠bac
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình tự vẽ nhé
a) Ta có:
MH vuông góc AB
AB vuông góc AC
=> MH//AC
\(\Rightarrow\widehat{BMH}=\widehat{BCA}\)(Đồng vị)
Ta có:
MK vuông góc AC
AB vuông góc AC
=> MK//AB
\(\Rightarrow\widehat{KMC}=\widehat{HBM}\)(Đồng vị)
b) Ta có:
\(\widehat{HMK}=180^o-\left(\widehat{HMK}+\widehat{KMC}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(\widehat{ACB}+\widehat{HBM}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(\widehat{ACB}+\widehat{ABC}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(180^o-\widehat{BAC}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-\left(180^o-90^o\right)\)
\(\Rightarrow\widehat{HMK}=90^o\)