\(\alpha\), bc=a, ac=b, ab=c. Chứng minh tan
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

Kẻ phân giác BD \(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\Rightarrow\frac{AD}{AD+CD}=\frac{AB}{AB+BC}\Rightarrow\frac{AD}{AC}=\frac{AB}{AB+BC}\Rightarrow AD=\frac{bc}{a+c}\)

\(tan\frac{\alpha}{2}=\frac{AD}{AB}=\frac{\frac{bc}{a+c}}{c}=\frac{b}{a+c}\left(đpcm\right)\)

 

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)

Xét tam giác ABC vuông tại A có \(tan\alpha=\frac{3}{4}=\frac{AC}{AB}=\frac{AC}{8}\Leftrightarrow AC=\frac{3.8}{4}=\frac{24}{4}=6\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có : 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

Vậy \(AC=6cm;BC=10cm\)

23 tháng 8 2021

Vì tam giác ABC vuông tại A :

-> tan a = \(\frac{AC}{AB}\) Hay tan a = \(\frac{AC}{8}\)

Lại có tan a = \(\frac{3}{4}\) -. AC=  \(\frac{8.3}{4}\)= 6 

Xét tam giác ABC vuông tại A có :\(AC^2\)\(AB^2\)\(BC^2\)

Tính ra BC = 10 

CHÚNG BẠN HỌC TỐT :)))

27 tháng 7 2017

Tam giác ABC vuông tại A => tan B = tan a => \(\frac{AC}{AB}=\frac{5}{12}\)

Mà AB= 6cm => AB= (AC.12)/5= (6.5)/12 = 2,5 cm

Áp dụng định lý py ta go ta có : BC^2 = AB^2 + AC^2 = 6^2 + 2,5 ^2 = \(\frac{169}{4}\) => BC=\(\sqrt{\frac{169}{4}}\)\(\frac{13}{2}\)= 6,5 cm