Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ∆AHC và ∆DHC có:
+CH chung
+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)
+HA=HC(gt)
\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)
A B C H D E K
a/ Xét tg vuông AHC và tg vuông DHC có
HC chung
HA = HD (gt)
=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)
b/ K là giao của AE và CD
Xét tg vuông ABC có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)
tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)
Xét tg vuông ABH và tg vuông AEH có
AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)
Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)
Xét tg vuông AHE có
\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)
Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)
Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)
\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC
c/
tg ABH = tg AEH (cmt) => AB = AE
tg AHC = tg DHC (cmt) => AC = CD
Xét tg ABC có
\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)
\(\Rightarrow AE+CD>BC\)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
Do đó: ABDC là hình chữ nhật
a)
Ta có: HE=HA(gt)
mà A,H,E thẳng hàng
nên H là trung điểm của AE
Xét ΔAED có
H là trung điểm của AE(cmt)
M là trung điểm của AD(A và D đối xứng nhau qua M)
Do đó: HM là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
⇒HM//ED và \(HM=\dfrac{1}{2}\cdot ED\)(Định lí 2 về đường trung bình của tam giác)
b) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu
Chim vẫn reo ca và môi hôn đang đứng đợi
Hoa vẫn nở và xuân thì đương tới
Hãy trải lòng xao xuyến với tình yêu.