K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH=\left(BC-CH\right)CH=25CH-CH^2\)

\(\Leftrightarrow144+CH^2-25CH=0\Leftrightarrow CH=16;CH=9\)cm 

=> \(BH=25-16=9;BH=25-9=16\)cm 

TH1 : Với CH = 16 cm ; BH = 9 cm ( mình xét TH1 bạn xét TH2 khi CH = 9 cm ; BH = 16 cm )

* Áp dụng hệ thức : \(AB^2=BH.BC=9.25\Rightarrow AB=15\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\frac{AH.BC}{AB}=\frac{12.25}{15}=20\)cm 

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

16 tháng 9 2021

AH =16cm (pitago)

BC=\(\dfrac{625}{9}\)cm (định lí 1)

HC=BC-HB=625/9-9=544/9 cm

AC=340000/81

21 tháng 7 2018

Gia sử:   AB < AC  =>  BH < HC

A B C H

Áp dụng hệ thức lượng ta có:

    \(AH^2=BH.CH\)

\(\Rightarrow\)\(BH.CH=144\)

        \(BH+CH=BC=25\)

Áp dụng hệ thức Vi-ét thì BH và CH là nghiệm của phương trình:

     \(x^2-25x+144=0\) 

\(\Leftrightarrow\)\(\left(x-9\right)\left(x-16\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=9\\x=16\end{cases}}\)

Do BH < HC  (theo cách vẽ)   nên  \(BH=9;\)\(HC=16\)

Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(AB^2=9.25=225\)

\(\Rightarrow\)\(AB=15\)

   \(AC^2=CH.BC\)

\(\Rightarrow\)\(AC^2=16.25=400\)

\(\Rightarrow\)\(AC=20\)

5 tháng 7 2018

A B C H

Xét \(\Delta ABC\)vuông tại A , ta có :

\(BC^2=AC^2+AB^2\Leftrightarrow BC=\sqrt{AC^2+AB^2}\)

\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)(cm)

Xét \(\Delta ABC\)vuông tại A có AH \(\perp\)BC tại H , ta có :

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5^2}{13}=\frac{25}{13}\)(cm)

\(AC^2=HC.BC\Leftrightarrow HC=\frac{AC^2}{BC}=\frac{12^2}{13}=\frac{144}{13}\)(cm)

\(AH^2=HB.HC\Leftrightarrow AH=\sqrt{HB.HC}=\sqrt{\frac{25}{13}.\frac{144}{13}}=\frac{60}{13}\)(cm)

Vậy ...

Nếu bạn muốn đổi ra số thập phân cũng đc nha nhưng mk để phân số cho gọn 

........................................................................................Chúc bạn học tốt.................................................................................................

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

ΔABC vuông tại A có AM là trung tuyến

nên BC=2*AM

=>BC=5

AB/BC=4/5

=>AB/5=4/5

=>AB=4

AC=căn 5^2-4^2=3

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2; CH*CB=CA^2

=>BH=4^2/5=3,2cm; CH=3^2/5=1,8cm

ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*5=4*3=12

=>AH=2,4cm

10 tháng 9 2021

Ta có : \(\frac{HB}{HC}=4\Rightarrow HB=4HC\)

lại có : \(BC=HB+CH\Rightarrow25=4HC+CH\Leftrightarrow5HC=25\Leftrightarrow HC=5\)cm 

=> \(HB=4.5=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC=20.25\Rightarrow AB=10\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AH^2=HC.HB=100\Rightarrow AH=10\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=5.25\Rightarrow AC=5\sqrt{5}\)cm

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.10.25=\frac{250}{2}=145\)cm2

3 tháng 8 2015

  theo hệ thức lượng tam giác vuông 
AC^2 = HC*BC = 16*BC (1) 
AH^2 = HC*BH = 16*BH (2) 
1/AH^2 = 1/AC^2 + 1/AB^2 (3) 
thay 1,2 vào 3: 
1/16*BH = 1/16*BC + 1/15^2 (4) 
mặt khác: 
BH = BC - HC = BC -16 
thay vào 4: 
1/16*(BC -16) = 1/16*BC + 1/225 
<=> 1/(BC - 16) - 1/BC = 16/225 
<=> (BC -BC +16)/((BC - 16)*BC) =16/225 
<=> BC^2 - 16*BC - 225 = 0 
=> BC = 25 (thỏa mãn) BC = -9 (loại) 
thay vào 1 ta có AC = 20 cm 
2 ta có AH = 12 cm 
Cố lên bạn nha!

5 tháng 6 2016

Đặt HB=x(cm,x>0) => BC=HB+HC=x+16

Ta có: Tam giác ABC vuông tại A có AH là đường cao

=>AB2=HB.BC

=>152=x.(x+16)

=>225=x2+16x

=>x2+16x-225=0

=>x2+25x-9x-225=0

=>x.(x+25)-9.(x+25)=0

=>(x+25).(x-9)=0

=>x=-25(loại) hay x=9(nhận)

Vậy HB=9(cm)

Ta có: AH2=HB.HC(hệ thức lượng)

=>AH2=9.16=144

=AH=12(cm)

Ta có: AC2=HC.BC(hệ thức lượng)

=>AC2=16.25=400

=>AC=20(cm)

Ta có: BC=HB+HC=9+16=25(cm)

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)