Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Đặt AH = x (x > 0)
Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có: AC2 = AB.AH
hay 152 = (x + 16)x ⇔ x2 + 16x -225 = 0
Giải phương trình, ta được x1 = 9 (thỏa mãn); x2 = -25 (loại)
Vậy AH = 9 (cm)
Ta có: HC2 = AH. HB = 9. 16 = 144
⇒ HC = 12 (cm)
Vậy diện tích tam gaics ABC là:
S=12AB.CH=12.25.12=150(cm2)

\(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
\(BH=\sqrt{3^2-2.4^2}=1.8\left(cm\right)\)
CH=BC-HB=5-1,8=3,2(cm)
Cho tam giác ABC vuông tại A đường cao AH, biết AB = 3cm; AC = 4 cm tính: a) BC,AH,HB b) số đo góc B

a) Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:
BC = \(\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}\)
BC = 5 cm
Từ hệ thức của cạnh góc vuông và hình chiếu của nó trên cạnh huyền suy ra:
HB = \(\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\) cm
Ta có: HB + HC = BC
1,8 + HC = 5
HC = 3,2 cm
Theo hệ thức liên quan đến đường cao ta có:
AH2 = HB . HC
AH2 = 1,8 . 3,2
AH2 = 5,76
⇒ AH = 2,4 cm

c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a: BC=9+16=25cm
AB=căn 9*25=15cm
AC=căn 16*25=20cm
b: Sửa đề: Kẻ HI vuông góc AB
AH=căn 9*16=12cm
AI=12^2/15=9,6cm
IB=15-9,6=5,4cm
c: KA=HI=12*9/15=108/15=7,2cm
KC=HC^2/AC=16^2/20=12,8cm

Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)