Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABH~\Delta CBA\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC^2=15^2+20^2=625\)
\(\Rightarrow\)\(BC=\sqrt{625}=25\)
\(\Delta ABH~\Delta CBA\)\(\Rightarrow\)\(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{BH}{15}=\frac{15}{20}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{3}{4}\)\(\Rightarrow\)\(AH=15\)
\(\frac{BH}{15}=\frac{3}{4}\)\(\Rightarrow\)\(BH=11,25\)
Sao ý A nhiều ng bảo ko làm đc nhỉ???
Ta chỉ cần dùng tính chất bắc cầu là ra mà
a)Xét \(\Delta ABH\) và \(\Delta CBA\) có:
\(\widehat{BHA}\)=\(\widehat{BAC}\)=900
\(\widehat{B}\) chung
\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g.g\right)\)
b)Áp dụng định lý Pitago,ta có:
BC2=AB2+AC2
\(\Rightarrow\)BC2=152+202
\(\Rightarrow BC^2=225+400\)
\(\Rightarrow BC^2=625\)
\(\Rightarrow BC=\sqrt{625}\)
\(\Rightarrow BC=25cm\)