Các câu hỏi dưới đây có thể giống với câu hỏi trên

20 tháng 10 2021
b: Xét ΔBCD vuông tại B có BA là đường cao
nên \(BA^2=AD\cdot AC\left(1\right)\)
Xét ΔBAC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AC=BH\cdot BC\)

13 tháng 10 2022
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE
Áp dụng hệ thức lượng trong tam giác vuông ta có
TheoPytago:BC2=AB2+AC2=152+202=625⇒BC=25(cm)Trong:ΔBCD⊥C;CA⊥BD⇒BC2=BA.BD⇒BD=62515=1253(cm)⇒AD=BD
Đúng(0)