K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>AC vuông góc CD

b: ABCD là hình bình hành

=>AD//BC và AD=BC

c: góc ABM=góc CDM=góc CDB

mà góc CDB>góc CBM(CB>CD)

nên góc ABM>góc CBM

 

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO

 

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>AC vuông góc CD

b: ABCD là hình bình hành

=>AD//BC và AD=BC

12 tháng 10 2019

A B C M N D / / x x

Xét △AMD và △CMB

Có: AM = MC (M là trung điểm)

     AMD = CMB (2 góc đối đỉnh)

       MD = MB (gt)

=> △AMD = △CMB (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b, Xét △ABM và △CDM

 Có: AM = MC (gt)

     BMA = CMD (2 góc đối đỉnh)

      MB = MD (gt)

=> △ABM = △CDM (c.g.c)

=> BAM = DCM (2 góc tương ứng)

Mà BAM = 90o

=> DCM = 90o

=> AC ⊥ CD

c, Vì BN // AC (gt)

=> BNC = ACD (2 góc đồng vị)

Mà ACD = 90o (câu b)

=> BNC = 90o

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng với cạnh huyền BD => NM = 1/2 . BD = BM

Xét △ABM vuông tại A và △CNM vuông tại C

Có: AM = MC (gt)

      BM = MN (cmt)

=> △ABM = △CNM (ch-cgv)

8 tháng 7 2019

a) Xét ΔABC vuông tại A, có:

BC2=AB2+AC2 ( Định lý Py-Ta-Go)

(=) 102=AB2+82

(=) 100=AB2+64

(=) AB2= 36

(=) AB =6(cm)  (do AB >0)

a) Áp dụng định lý Py ta go ta có :

BC2 =AB+ AC2

=> AB2 = 100 - 64 

=> AB = 6 cm

b) Xét ∆BAM và ∆DCM ta có :

BM = MD 

AM = MC ( BM là trung tuyến) 

BMA = CMD ( đối đỉnh) 

=> ∆BAM = ∆DCM (c.g.c)

=> BAC = MCD = 90 độ 

=> AC vuông góc với CD (dpcm)

=> AB = CD ( tg ứng )(dpcm)

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

27 tháng 8 2015

a) \(AC^2=BC^2-AB^2\)

 \(AC^2=10^2-6^2\)

 \(AC^2=100-36\)

 \(AC^2=64\)

\(AC=8\)

  A D C B M      

mình vẽ cái hinhf nó ko đc đẹp với chính xác đâu

b) Xét \(\Delta ABM\) và \(\Delta CDM\) ta có

BM = DM ( gt )

M là góc chung

AM = CM ( BN là đường trung tuyến )

Vậy \(\Delta AMB\) = \(\Delta CDM\) ( c.g.c )

\(\Rightarrow\) AB = CD ( 2 góc tương ứng )