Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
=>AB2+AC2=262 (1)
Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:
\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)
Sửa
\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)
\(\Rightarrow AC\approx9,7\left(cm\right)\)
=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{AB}{AC}=\frac{5}{2}=>AB=\frac{5}{2}AC\)
Áp dụng định lí Pi-ta-go vào tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
=> \(AB^2+AC^2=26^2(1)\)
Thay \(AB=\frac{5}{2}AC\)vào \((1)\)ta được :
\((\frac{5}{2}AC)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)
\(=>\frac{29}{4}AC^2=676=>AC^2\approx93,2=>AC\approx9,7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ABAC=52⇒AB=52ACABAC=52⇒AB=52AC
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
AB2+AC2=BC2AB2+AC2=BC2
=>AB2+AC2=262 (1)
Thay AB=52ACAB=52AC vào (1) ta được:
(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676
=>294AC2=676⇒AC2≈93,2⇒AC≈9,7
AB/AC = 5/2 ⇒ AB = 5/2AC
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)
⇒ AC ≈ 9,7(cm)
=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: AB/8=AC/15=k
=>AB=8k; AC=15k
Theo đề, ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow289k^2=51^2\)
=>k=3
=>AB=24cm; AC=45cm
b: AB=4/3AC
mà AB-AC=14
nên 4/3AC-AC=14
=>AC=42cm
=>AB=56(cm)
\(BC=\sqrt{42^2+56^2}=70\left(cm\right)\)
vì \(\Delta ABC\) vuông tại A nên \(AB^2+AC^2=BC^2=10^2=100\)
ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất của dãy TSBN ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}AB^2=36\\AC^2=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=6\\AC=8\end{matrix}\right.\)
vậy AB = 6cm, AC = 8cm