Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tứ giác AHBD có
M là trung điểm AB (GT)
M là trung điểm HD (do D đx H qua M)
AB cắt HD tại M
=> AHBD là hbh
Mà \(\widehat{AHB}=90^o\) (do ...)
=> AHBD là hcn
b/ Có AHBD là hcn
=> AD // HB ; AD = HB (t/c)
Mà HB = HE ; H,E,B thẳng hàng
=> AD // HE ; AD = HE
=> AEHD là hbh
c/ Tứ giác AENB có
HE = HB ; H,E,B thẳng hàng
H là trung điểm AN (do N đx A qua H) EB cắt AN tại H
AH ⊥ BC tại H (E thuộc BC ; N thuộc AH)
=> AENB là hình thoi
d/ Xét t/g BNA có
H là trung điểm AH
M là trung điểm AB
BH cắt MN tại K
=> K là trọng tâm t/g BNA
=> BK = 2/3.BH
Mà BH = HE
=> BK = 2/3HE
=>2HE=3BK Lại có H,E,B thẳng hàng ; HE = HB
=> H là trung điểm BE
=> 2HE = BE
=>3BK=BE
\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành
Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn
\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)
Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)
Do đó: ADHE là hình bình hành
\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE
Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)
Do đó \(MN//BH\) hay \(MN//BC\)
Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)
Do đó \(NK//HC\) hay \(NK//BC\)
Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Lời giải chi tiết bài toán:
Đề bài:Cho tam giác ABCABC vuông tại AA, có AB=aAB = a. Gọi M,N,DM, N, D lần lượt là trung điểm của AB,BC,ACAB, BC, AC.
- Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài của NDND theo aa.
- Chứng minh tứ giác ADNMADNM là hình chữ nhật.
- Gọi QQ là điểm đối xứng của NN qua MM. Chứng minh AQBNAQBN là hình thoi.
- Trên tia đối của tia DBDB lấy điểm KK sao cho DK=DBDK = DB. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng.
-
Vì NN là trung điểm của BCBC và DD là trung điểm của ACAC, theo định nghĩa đường trung bình:
NDND song song với ABAB và ND=12ABND = \frac{1}{2}AB. -
Do AB=aAB = a, suy ra ND=12aND = \frac{1}{2}a.
Kết luận: NDND là đường trung bình của tam giác ABCABC, và ND=12aND = \frac{1}{2}a.
2. Chứng minh tứ giác ADNMADNM là hình chữ nhật:-
MM là trung điểm của ABAB, nên AM=MB=12AB=12aAM = MB = \frac{1}{2}AB = \frac{1}{2}a.
-
ND∥ABND \parallel AB và ND=12ABND = \frac{1}{2}AB (tính chất đường trung bình).
-
AM⊥ABAM \perp AB (tam giác vuông tại AA), nên AM⊥NDAM \perp ND.
-
Tứ giác ADNMADNM có:
- AD∥MNAD \parallel MN (vì cùng vuông góc với ABAB).
- AM⊥NDAM \perp ND.
Do đó, ADNMADNM là hình chữ nhật.
3. Chứng minh AQBNAQBN là hình thoi:-
QQ là điểm đối xứng của NN qua MM, nên MQ=MNMQ = MN.
-
Vì MM là trung điểm của ABAB, suy ra AQ=BN=AB=aAQ = BN = AB = a.
-
Trong hình chữ nhật ADNMADNM:
- AM=ND=12aAM = ND = \frac{1}{2}a, và MM là trung điểm của ABAB.
-
Tứ giác AQBNAQBN có:
- AQ=BNAQ = BN.
- AB=QN=aAB = QN = a.
Vậy AQBNAQBN là hình thoi.
4. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng:-
Trên tia đối của tia DBDB, lấy điểm KK sao cho DK=DBDK = DB.
-
QQ đối xứng với NN qua MM, nên MQ=MNMQ = MN.
-
Trong tam giác vuông ABCABC, DD và MM lần lượt là trung điểm của ACAC và ABAB:
- DB=AC2+AB22=a2+AC22DB = \frac{\sqrt{AC^2 + AB^2}}{2} = \frac{\sqrt{a^2 + AC^2}}{2}.
- DK=DBDK = DB, nên KK nằm trên đường thẳng qua DD kéo dài.
-
Vì AQBNAQBN là hình thoi, nên AQAQ song song với DBDB. Kết hợp với vị trí của KK, suy ra Q,A,KQ, A, K thẳng hàng.
- NDND là đường trung bình của tam giác ABCABC, ND=12aND = \frac{1}{2}a.
- ADNMADNM là hình chữ nhật.
- AQBNAQBN là hình thoi.
- Ba điểm Q,A,KQ, A, K thẳng hàng.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a) Xét tứ giác AHBD có
M là trung điểm của đường chéo AB(gt)
M là trung điểm của đường chéo HD(H và D đối xứng nhau qua M)
Do đó: AHBD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AHBD có \(\widehat{AHB}=90^0\)(AH⊥BC)
nên AHBD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: AHBD là hình chữ nhật(cmt)
nên AD//HB và AD=HB(hai cạnh đối trong hình chữ nhật AHBD)
mà E∈HB và HE=HB(gt)
nên AD//EH và AD=EH
Xét tứ giác AEHD có AD//EH(cmt) và AD=EH(cmt)
nên AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: EH=BH(gt)
mà E,H,B thẳng hàng
nên H là trung điểm của EB
Xét tứ giác AENB có
H là trung điểm của đường chéo EB(cmt)
H là trung điểm của đường chéo AN(A và N đối xứng nhau qua H)
Do đó: AENB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AENB có AN⊥EB(AH⊥BC, E∈BC, N∈AH)
nên AENB là hình thoi(Dấu hiệu nhận biết hình thoi)