Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo link này nhé.
Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath
a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔHCA đồng dạng với ΔACB
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
1: Xet ΔACB và ΔHCA có
góc C chung
góc CAB=góc CHA
=>ΔACB đồng dạng vói ΔHCA
2: \(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
AH=9*12/15=108/15=7,2cm
HB=12^2/15=144/15=9,6cm
=>HC=15-9,6=5,4cm
3: \(\dfrac{S_{ACB}}{S_{HCA}}=\left(\dfrac{CB}{CA}\right)^2=\dfrac{25}{9}\)
4: Xét ΔHAB có HE/HA=HD/HB
nên ED//AB
=>DE vuông góc AC
Xét ΔCAD có
DE,AH là đường cao
DE cắt AH tại E
=>Elà trực tâm
=>CE vuông góc AD