Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
hay \(AH=\dfrac{AB\cdot AC}{BC}\)
Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(BH^2=BM\cdot BA\)
hay \(BM=\dfrac{BH^2}{BA}\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(CH^2=CN\cdot CA\)
hay \(CN=\dfrac{CH^2}{CA}\)
Ta có: \(BM\cdot CN\cdot AH\)
\(=\dfrac{BH^2\cdot CH^2}{AB\cdot AC}\cdot\dfrac{AB\cdot AC}{BC}\)
\(=BC^3\)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a) Ta có tứ giác MHNA là hình chữ nhật
\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) ( góc nội tiếp cùng chắn cung AN)
mà \(\widehat{AHN}=\widehat{ACH}\) ( cùng phụ với \(\widehat{HAN}\) )
\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)
Xét \(\Delta AMN\) và \(\Delta ACB\) có:
\(\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ACH}\left(cmt\right)\\\widehat{MAN}chung\end{matrix}\right.\)
\(\Rightarrow\Delta AMN\sim\Delta ACB\left(g.g\right)\)
\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Rightarrow AM.AB=AN.AC\left(đpcm\right)\)
b) Xét \(\Delta AHB\) vuông tại H, \(MH\perp AB\) có:
\(MH^2=MA.MB\left(1\right)\)
cmtt: \(NH^2=NA.NC\left(2\right)\)
Ta lại có: \(HB.HC=AH^2=MN^2\)( 2 đường chéo bằng nhau) (3)
Xét \(\Delta MHN\) vuông tại H có
\(\Rightarrow MH^2+HN^2=MN^2=AH^2\left(4\right)\)
Từ (1),(2),(3) và (4) \(\Rightarrow HB.HC=MA.MB+NA.NC\left(đpcm\right)\)
c) Có \(HB=\frac{AC^2}{BC}\)
\(HC=\frac{AC^2}{BC}\)
\(\Rightarrow\frac{BH}{HC}=\frac{AB^2}{BC}:\frac{AC^2}{BC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)
a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(AH^2=AM\cdot AB\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(AH^2=AN\cdot AC\left(2\right)\)
Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)
b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)
\(\Rightarrow MH=AN\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(HN^2=AN\cdot NC\)
Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(HM^2=AM\cdot MB\)
Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:
\(AN^2+HN^2=AH^2\)
Mà \(MH=AN\)
\(\Rightarrow MH^2+HN^2=AH^2\)
\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)
c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)
\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)
\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)
$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)
$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)
a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)
<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)
Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)
<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)
=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\)
=> AE; AF=......
b) Lần lượt áp dụng các HTL, ta có:
\(BE.AE=HE^2\); \(AF.CF=HF^2\)
<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)
Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF
<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL)
=> \(BC.CF.BC=EF^3\left(đpcm\right)\)