Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : AB < AC < BC ( 6 < 8 < 10 )
=> \(\widehat{C}< \widehat{B}< \widehat{A}\)( quan hệ giữa góc và cạnh đối diện )
b ) \(\Delta ABC\)có : AB2 + AC2 = 62 + 82 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
Theo đ/l Py-ta-go => Tam giác ABC là tam giác vuông
c ) DH \(\perp\)BC => Tam giác BHD vuông
Xét 2 tam giác vuông : \(\Delta BHD\)và \(\Delta BAD\)có :
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)( do BD là tia p/g của góc B )
=> Tam giác BHD = tam giác BAD
=> \(\widehat{BDA}=\widehat{BDH}\)
=> DB là tia p/g của góc ADN
d ) tự làm
A B C D H M
Giải: a) Ta có: AB < AC < BC(6cm < 8cm< 10cm)
=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)
b) Ta có: AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> t/giác ABC là t/giác vuông (theo định lí Pi - ta - go đảo)
c) Xét t/giác ABD và t/giác HBD
có: \(\widehat{A}=\widehat{BHD}=90^0\)
BD : chung
\(\widehat{ABD}=\widehat{HBD}\)(gt)
=> t/giác ABD = t/giác HBD (ch - gn)
=>\(\widehat{ADB}=\widehat{HDB}\) (2 góc t/ứng)
=> DB là tia p/giác của góc ADH
d) Xét t/giác ADM và t/giác HDC
có: \(\widehat{MAD}=\widehat{DHC}=90^0\)
AD = HD (vì t/giác ABD = t/giác HBD)
\(\widehat{ADM}=\widehat{HDC}\) (đối đỉnh)
=> t/giác ADM = t/giác HDC (g.c.g)
=> AM= HC (2 cạnh t/ứng)
Mà AB + AM = BM
BH + HC = BC
và AB = BH (vì t/giác ABD = t/giác HBD) ; AM = HC (cmt)
=> BM = BC => t/giác AMC cân tại B
=> \(\widehat{M}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (1)
Ta có: AB = HB (vì t/giác ABD = t/giác HBD)
=> t/giác ABH cân tại B
=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\) (2)
Từ (1) và (2) => \(\widehat{M}=\widehat{BAH}\)
Mà 2 góc này ở vị trí đồng vị
=> CM // AH
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A
b) \(\Delta BAD=\Delta BHD\left(ch-gn\right)\)vì:
\(\hept{\begin{cases}BDchung\\\widehat{BHD}=\widehat{BAD}=90^o\\\widehat{ABD}=\widehat{DBH}\end{cases}}\)
A B C D H
a,\(\Delta ABC\)vuông tại A , theo định lí Py - ta - go , ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=10^2\)
\(\Leftrightarrow BC=10\)
b, xét tam giác vuông \(ABD\)và tam giác vuông \(HBD\)có
\(\widehat{BD}\)chung
Vậy \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
c , câu này mik ko hiểu , bạn bỏ qua cho mik nhé ^^
d, Do \(\Delta DHC\)vuông tại H
\(\Rightarrow DH< DC\)(đường vuông góc ngắn hơn đường xiên)
Mà \(DA=DA\)\(\left(\Delta ABD=\Delta HBD\right)\)
Vì vậy \(DA< DC\)
Chúc bạn học tốt !
Bài 1
a. (Tự vẽ hình)
Áp dụng định lí Py-ta-go, ta có:
BC2= AB2 + AC2
<=> BC2= 62 + 82
<=> BC2= 100
=> BC = 10 (cm)
Bài 1
b. Áp dụng định lí Py-ta-go, ta có:
AC2 = AH2 + HC2
<=> 82 = 4,82 + HC2
<=> 64 = 23,04 + HC2
=> HC2 = 64 - 23,04
=> HC2 = 40,96
=> HC = 6,4 (cm)
=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên BA=BH và DA=DH
=>BD là đường trung trực của AH