Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/. Tam giác AKC có
CH là đường cao
AE là đường cao
Ch cắt AE tại E
Nên E là trực tâm của tam giác AKC
3/. Ta có góc HAC + góc HCA = 90 độ
Ta có góc IEC + góc ECI = 90 độ => góc ICE + góc HCA = 90 độ
=> góc HAC = góc IEC (1)
Ta có IH = AH (tam giác AIK vuông tại I, HI là trung tuyến)
=> tam giác AHI cân tại H => góc HAI = góc HIA => góc HAC = góc HIA (2)
Ta có IM = MẸ (tam giác EIC vuông tại I, IM là trung tuyến
=> tam giác EMI cân tại M => góc IEM = góc MIE => góc IEC = góc MIE (3)
Từ (1)(2)(3) ta suy ra góc HIA = góc MIE (4)
Ta có góc HIA + góc HIE = 90 độ(5)
góc HIE + góc EIM = 90 độ(6)
Từ (4)(5)(6) ta suy ra góc HIE + góc EIM = 90 độ => HI vuông góc với IM
a: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
=>AMDN là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
=>N là trung điểm của AC
c: Xét tứ giác ADCE có
N là trung điểm chung của AC và DE
Do đó: ADCE là hình bình hành
mà DA=DC
nên ADCE là hình thoi
d: ADCE là hình thoi
=>AE//CD
=>AE//BC
=>AECB là hình thang
Để AECB là hình thang cân thì góc ABC=góc ECB
=>góc ABC=2*góc ACB
mà góc ABC+góc ACB=90 độ
nên góc ABC=2/3*90=60 độ
DMA = MAN = AND = 900 (gt)
=> AMDN là hình chữ nhật
=> AB // ND
mà D là trung điểm của BC (gt)
=> N là trung điểm của AC
mà N là trung điểm của DE (gt)
=> ADCE là hình bình hành
mà DE _I_ AC (gt)
=> ADCE là hình thoi
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
b: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
c: Ta có: DM\(\perp\)AC
AB\(\perp\)AC
Do đó: DM//AB
Xét ΔCAB có
D là trung điểm của CB
DM//AB
Do đó: M là trung điểm của AC
Xét tứ giác ADCK có
M là trung điểm chung của AC và DK
=>ADCK là hình bình hành
Hình bình hành ADCK có AC\(\perp\)DK
nên ADCK là hình thoi