K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+\left(12\sqrt{3}\right)^2=576\)

hay BC=24(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{12}{24}=\dfrac{1}{2}\)

nên \(\widehat{C}=30^0\)

\(\Leftrightarrow\widehat{B}=60^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{B}=90^0-\widehat{C}=90^0-52^0\)

hay \(\widehat{B}=38^0\)

Xét ΔABC vuông tại A có

\(AB=BC\cdot\sin\widehat{ACB}\)

\(\Leftrightarrow AB=12\cdot\sin52^0\)

hay \(AB\simeq9.46cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-\left(9.46\right)^2=54.5084\)

hay \(AC\simeq7.38cm\)

Vậy: \(\widehat{B}=38^0\)\(AB\simeq9.46cm\)\(AC\simeq7.38cm\)

10 tháng 9 2020

a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)

\(C=90^0-B\approx37^0\)

Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)

Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)

b) Vì AD là phân giác tại A của tam giác ABC nên:

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)

Mà \(BD+CD=BC=15\)

\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)

17 tháng 6 2016

Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.

A B C H E F

a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.

\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)

b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)

c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).

1 tháng 7 2022

Cô giải kĩ lại phần c đc ko ạ? Yếu tố cạnh nào vậy ạ?

19 tháng 6 2016
  1. Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
  • =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
  • Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)\(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)\(\frac{1}{5^2}\)\(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)

3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC                                                                     2.=>\(\frac{AB}{AF}\)\(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)

hay \(\widehat{C}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}BD=\dfrac{45}{7}\left(cm\right)\\CD=\dfrac{60}{7}\left(cm\right)\end{matrix}\right.\)

c) Xét tứ giác AFDE có 

\(\widehat{AFD}=90^0\)

\(\widehat{AED}=90^0\)

\(\widehat{FAE}=90^0\)

Do đó: AFDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật AFDE có AD là tia phân giác của \(\widehat{FAE}\)(gt)

nên AFDE là hình vuông(Dấu hiệu nhận biết hình vuông)

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:

\(BA^2=AE\cdot AC\)

\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)

nên \(\widehat{C}\simeq36^052'\)

b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có 

\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)

Do đó: ΔMAB\(\sim\)ΔABE(g-g)

 

8 tháng 8 2021

mk cần câu c và d ạ

15 tháng 8 2016

Giải:

Toán lớp 9
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=70
0, góc C=50nên góc A=600

Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400

Áp dụng HTCVGTTGV ABH,ta có :

BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 70=23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)

Toán lớp 9

Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.

Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1
 =300

Xét tam giác vuông AHC,ta có:
AH2 +HC2  =AC2
(12√3) +18=AC2

=>AC=6√21 (cm)

Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH

                                                       12√3=tan góc C.18

                                                       => góc C=49=>góc A=41=>gócA= 710

Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm

Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490    

Ròy đóa Tuyền thanghoa

 

 

 

17 tháng 8 2016

tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi