Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)
b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)
c, Tính được BC = 10 cm
\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)
Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:
BH = 3,6 cm và CH = 6,4 cm
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
AD định lí Py ta go ta cs
\(AN^2=OA^2-ON^2\)
\(CN^2=OC^2-ON^2\)
\(CN^2-AN^2=OC^2-OA^2\left(1\right)\)
AD định lí Py ta go tương tự các phần khác
Nên => Từ (1) ; (2) ; (3)
\(\Rightarrowđpcm\)
hình b tự vẽ
áp dụng định lý pi-ta-go vào tam giác vuông AHB, ta có:
AH2+HB2=AB2(1)
áp dụng định lý pi-ta-go vào tam giác vuông AHC, ta có:
AH2+CH2=AC2(2)
(1)-(2)=AB2-AC2=AH2+HB2-AH2-CH2=HB2-CH2(*)
áp dụng định lý pi-ta-go vào tam giác vuông EHB, ta có:
EH2+HB2=EB2(3)
áp dụng định lý pi-ta-go vào tam giác vuông EHC, ta có:
CH2+EH2=CE2(4)
(3)-(4)=EH2+HB2-CH2+EH2=HB2-CH2(--)
tự làm tiếp
mình không hiểu cái đoạn 1-2 và 3-4