Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì AM là đường trung tuyến ứng với cạnh huyền của △ABC△ABC vuông tại A nên AM=MB=MCAM=MB=MC
⇒△MAB;△MAC⇒△MAB;△MAC cùng cân tại M
⇒MD⇒MD vừa là đường cao, vừa là đường phân giác trong △MAB△MAB.
⇒△BMD=△AMD(c.g.c)⇒ˆDBM=ˆDAM=90∘→DB⊥BC⇒△BMD=△AMD(c.g.c)⇒DBM^=DAM^=90∘→DB⊥BC
Chứng minh tương tự có: △AME=△CME(c.g.c)→ˆECM=ˆMAE=90∘→CE⊥BC△AME=△CME(c.g.c)→ECM^=MAE^=90∘→CE⊥BC
DB//CEDB//CE
b) Từ các chứng minh trên ta suy ra: BD=DA;CE=AE→BD=DA;CE=AE→ đpcm
bẠN kham khỏa nhé.
Bạn tự vẽ hình được không ạ?
a, Góc AEK= góc ABC (đồng vị)
Góc AKE=góc ACB (đồng vị)
b, Ta có: EK song song BC(gt)
Mặt khác AH vuông góc BC (gt)
-> AH vuông góc EK.
c, Đề sai ạ?
Đề ko sai đâu
Bn giúp mk nhanh Lên mk đang cần gấp
Thank trc nha
quá dễ, ahihi đồ ngốc