K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{H}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)

15 tháng 8 2021

giúp e ý c với :((

10 tháng 2 2018

kho ua

28 tháng 2 2017

  A;áp dụng pitago ta có : BC2 = 202+152=625

       suy ra : BC= \(\sqrt{625}\) =25

 Xét tam giác :\(\Delta abc\)và  \(\Delta ahc\)ta có :

          \(\widehat{c}\) ( góc chung)

     \(\widehat{ahc}\)= \(\widehat{bac}\) = 90 độ

   vậy \(\Delta ABC\)đồng dạng với  \(\Delta AHC\)( g-g)

                     suy ra  : \(\frac{15}{25}\)=  \(\frac{AH}{20}\)  

                     vậy AH= 12 cm \(\left(ĐPCM\right)\)

     B)  ta có :áp dụng pitago ta có:  BH^2 = 15^2-12^2=81 cm

                  vậy BH =\(\sqrt{81}\)=\(9\)cm

      áp dụng đường phân giác trong tam giác ta lại có

                \(\frac{DH}{DB}\)= \(\frac{15}{12}\)  

         \(_{_{ }\Leftrightarrow}\)\(\frac{9-DB}{DB}\) = \(\frac{15}{12}\)

       \(\Leftrightarrow\)    \(\left(9-DB\right)\)\(_{\times}\) \(12\)=  \(15\times DB\)

       \(\Leftrightarrow\)    108 -12DB=15DB

         \(\Leftrightarrow\)  108 = 15DB+12DB

            \(\Rightarrow\)DB=4 cm \(\left(ĐPCM\right)\)

                  DH= BH - BD= 9 - 4=5 \(\left(ĐPCM\right)\)

          phần C mình gửi sau nhé bạn xin lỗi nhé ^_^

1 tháng 3 2017

                                                                                 \(GIẢI\)\(TIEP\)

ta có : \(\widehat{HCF}\)= \(\widehat{CHA}\) =\(90\)độ ( giả thiết)

    mà hai góc này lại ở vị trí sole trong suy ra :HA song song với CF

          suy ra: \(\widehat{CFH}\)= \(\widehat{AHF}\) ( HAI GÓC SOLE TRONG )

                     \(\widehat{FCA}\) =\(\widehat{HAC}\)( HAI GÓC SOLE TRONG ) 

       TỪ hai điều trên suy ra : \(\widehat{CMF}\)=  \(\widehat{HMA}\)         

          mà hai góc này lại ở vị trí đối đỉnh của CA và HF suy ra:

    HMF thẳng hàng        

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0