Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho
BD = BA.
Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.
a)Chứng minh : ; c) Chứng minh : AK = AH. | b)Chứng minh : AD là phân giác của góc HAC |
BAˆD = BDˆA
Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau
a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\Delta ABH\)có \(\widehat{AHB}=90^o\)
\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)
hay \(10^2=AH^2+6^2\)
\(AH^2=64\)
\(AH=8\left(cm\right)\)
b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow BD=DA\)
\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)
\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D
c, Nối D với C, H với E
Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)
Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE
d,
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b:
MD\(\perp\)AB
AC\(\perp\)AB
Do đó: MD//AC
ME\(\perp\)AC
AB\(\perp\)AC
Do đó: ME//AB
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔBAC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔBAC
=>MD//AC và \(MD=\dfrac{AC}{2}\)
\(MD=\dfrac{AC}{2}\)
\(CE=\dfrac{AC}{2}\)
Do đó: MD=CE
MD//AC
\(E\in\)AC
Do đó: MD//CE
Xét tứ giác DMCE có
DM//CE
DM=CE
Do đó: DMCE là hình bình hành
c: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=\dfrac{AC}{2}\)
mà \(MD=\dfrac{AC}{2}\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
=>DHME là hình thang
Hình thang DHME có MD=HE
nên DHME là hình thang cân
a: Xét ΔAHC có
O là trung điểm của AH
F là trung điểm của AC
Do đó: OF là đường trung bình
=>HC=2OF