Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tg AMH vuong tai M co; AH2 = AM2 + HM2
tg BMH co; BM2 = BH2-HN2
cong 2 pt ban toi da nhan ra chua ban co thay AM=AN ; HM = HN thay vao ban se thay phep dieu ky
ma toi mang den cho ban la dpcm
A B C D a)
ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C
ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD
CM tương tự ta có: CD=AB
xét \(\Delta ABC\) và \(\Delta DCB\) có:
BD=AC(cmt)
AB=DC(cmt)
BC(chung)
\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)
=>\(\widehat{BAC}=\widehat{BDC}=80^o\)
b)
theo câu a, ta có:
\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)
=>CD//AB(2 góc slt)
A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn
ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé
Ta có: Tam giác ABC đồng dạng vs tam giác HBA (g.g) (1)
====> góc ( ACB ) = góc ( HAB )
====> góc ( KAH ) = góc ( KCA ) (do tính chất đường phân giác)
Mà: góc (KAH) + góc (KCA) = góc (HAB) = góc (BHA) - góc (ABH) (***) (tính chất của tam giác vuông)
Lại có: tam giác ABC đồng dạng vs tam giác HAC (g.g) (2)
Từ (1) và (2) ===> tam giác HBA cũng đồng dạng vs tam giác HAC
===============> góc (HBA) = góc (HAC) (*)
Vậy từ (*) và (***) =>>> góc (KAH) + góc (KCA) = góc (HAC)
Vậy có thể chứng minh rằng góc (AKC) vuông
hay AK vuông góc CK
ko nhớ đây là D hay B nữa