K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 12 2017
mình hướng dẫn nhé
a) sử dụng hệ thức lượng trong \(\Delta\) vuông. Đây là tính cạnh
còn tính góc thì sử dụng hệ thức giữa cạnh và góc
áp dụng công thức là làm đc đấy mà
b) sử dụng tính chất 2 tiếp tuyến cắt nhau rồi xét \(\Delta\)có tia phân giác đồng thời là đường cao, đường trung trực
c) chứng minh tiếp tuyến ta chứng minh \(\Delta\)vuông
d) mình chưa nghĩ ra nhưng chắc là sử dụng hệ thức lượng quy về \(\Delta\)
vuông
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4(cm)
Vậy: BC=5cm; AH=2,4cm
b) Xét (A) có
AI là một phần đường kính
MH là dây
AI⊥MH tại I(gt)
Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)
Xét ΔCMI vuông tại I và ΔCHI vuông tại I có
CI chung
IM=IH(I là trung điểm của MH)
Do đó: ΔCMI=ΔCHI(hai cạnh góc vuông)
Suy ra: CM=CH(hai cạnh tương ứng)
Xét ΔCMA và ΔCHA có
CM=CH(cmt)
CA chung
AM=AH(=R)
Do đó: ΔCMA=ΔCHA(c-c-c)
Suy ra: \(\widehat{CMA}=\widehat{CHA}\)(Hai góc tương ứng)
mà \(\widehat{CHA}=90^0\)(gt)
nên \(\widehat{CMA}=90^0\)
hay CM là tiếp tuyến của (A)
mik cần câu c thôi