Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta HBA\)và \(\Delta ABC\)
ta có \(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
nên \(\Delta HBA\)\(\Delta ABC\)(g - g)
b) Xét \(\Delta ABC\)ta có
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=20\left(cm\right)\)
có \(\Delta HBA\)\(\Delta ABC\)
nên \(\frac{AH}{AC}=\frac{AB}{BC}\)và \(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow AH=9,6\left(cm\right);BH=7,2\left(cm\right)\)
c) Xét \(\Delta ABC\)
có AD là phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
mà có BD + CD = BC = 20
nên BD = \(\frac{60}{7}\)
d)có AK + KH = AH
suy ra KH = 6 (cm)
có
a, Xét \(\Delta\)HBA và \(\Delta\)ABC ta có :
\(\widehat{B}-chung\)
\(\widehat{BAC}=\widehat{BHA}\left(90^0\right)\)
\(\Rightarrow\Delta\)HBA đồng dạng với \(\Delta\)ABC(g.g)
b, Vì \(\Delta\)ABC vuông tại A => A = 90^0
Áp dụng đinh lí Py ta go ta đc :
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\Leftrightarrow BC=20\)
Làm tiếp nhé.
phải là tam giác ABC vuông chứ ?
A B C 6 8 H
a, Xét tam giác BHA và tam giác BAC ta có :
^B chung
^BHA = ^BAC = 900
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )
tương tự với CHA ~ tam giác CAB ( g.g )
\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\)( tỉ số đồng dạng )
b, tam giác ABC vuông tại A, AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=26+64=100\Rightarrow BC=10\)cm
Ta có : \(\frac{AH}{AB}=\frac{AB}{BC}\Rightarrow AB.AC=AH.BC\)( cma )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}\)cm
Ta có : \(\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=HC.BC\)
\(\Rightarrow64=HC.10\Rightarrow HC=\frac{64}{10}=\frac{32}{5}\)cm
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
B góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c =>
câu 2:
a)xét tg HBA và ABC có
góc AHB=BAC=900
góc B chung
=>tg HBA đồng dạng vs tg ABC(g-g)
b) áp dụng pytago vào tg ABC có
BC2=AB2+AC2
=>BC2=62+82
=>BC2=36+64
=>BC=\(\sqrt{100}=10cm\)
xét tam giác HBA đd vs tg ABC có
\(\frac{BA}{BC}=\frac{HA}{AC}\Rightarrow\frac{6}{10}=\frac{HA}{8}\Rightarrow HA=\frac{6.8}{10}\)
\(\Rightarrow HA=4,8\)
c) theo tính chất đường phân giác, ta có
\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{DC}=\frac{6}{8}\Rightarrow\frac{BD}{BD+DC}=\frac{6}{8+6}\)
\(\Rightarrow\frac{BD}{BC}=\frac{6}{14}\)\(\Rightarrow\frac{BD}{10}=\frac{6}{14}\Rightarrow BD=\frac{6.10}{14}\approx4.3\)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
A H D B C K M N
a) Xét \(\Delta HBA,\Delta ABC\) có :
\(\left\{{}\begin{matrix}\widehat{B}:Chung\\\widehat{AHB}=\widehat{CAB}=90^o\end{matrix}\right.\)
\(\Rightarrow\) \(\Delta HBA\sim\Delta ABC\left(g.g\right)\)
b) Xét \(\Delta ABC\perp A\) có :
\(BC^2=AB^2+AC^2\) (Định lí Pitago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(S_{\Delta ABC}=\) \(\left\{{}\begin{matrix}\dfrac{1}{2}AH.BC\\\dfrac{1}{2}AB.AC\end{matrix}\right.\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH.20=12.16\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
c) Xét \(\Delta ABC\) có :
- AD là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\)\(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{BD}{AB}=\dfrac{BD}{3}\\\dfrac{DC}{AC}=\dfrac{DC}{4}\end{matrix}\right.\Rightarrow\dfrac{BD+DC}{3+4}=\dfrac{BC}{7}=\dfrac{20}{7}\)
Vậy : \(\dfrac{BD}{3}=\dfrac{20}{7}\Rightarrow\dfrac{20.3}{7}=\dfrac{60}{7}\left(cm\right)\)
d) Xét tứ giác BMCNcó :
\(MN//BC\left(gt\right)\)
=> Tứ giác BMCN là hình thang.
Xét \(\Delta AMK,\Delta CBA\) có :
\(\left\{{}\begin{matrix}\widehat{B}=\widehat{A}=90^o\\\widehat{AMK}=\widehat{CBA}\left(\text{ đồng vị}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMK\sim\Delta CBA\left(g.g\right)\)
\(\Rightarrow\)\(\dfrac{AM}{CB}=\dfrac{AK}{CA}\)
Hay : \(\dfrac{AM}{20}=\dfrac{3,6}{16}\Rightarrow AM=\dfrac{3,6.20}{16}=4,5\left(cm\right)\)
Xét \(\Delta ABC\) có :
\(MN//BC\left(gt\right)\)
\(\Rightarrow\) \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)
Hay : \(\dfrac{4,5}{12}=\dfrac{MN}{20}\Rightarrow MN=\dfrac{4,5.20}{12}=7,5\left(cm\right)\)
Ta có : \(S_{BMCN}=\dfrac{\left(MN+BC\right).KH}{2}\)
\(\Rightarrow S_{BMCN}=\dfrac{\left(7,5+20\right).\left(AH-AK\right)}{2}\)
\(\Rightarrow S_{BMCN}=\dfrac{\left(7,5+20\right).6}{2}=82,5\left(cm^2\right)\)