...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

Hình bài này đơn giản, bạn tự vẽ.

Kẻ đường cao AH. Theo đề bài ta có:

\(\left\{{}\begin{matrix}\dfrac{BH}{CH}=\dfrac{9}{16}\\BH+CH=BC=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{9}{5}\\CH=\dfrac{16}{5}\end{matrix}\right.\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot\sqrt{BH\cdot CH}\cdot5=...\)

19 tháng 8 2020

Kẻ đường cao AH (H thuộc BC) => BH/CH=9/16

=> BH=[5:(9+16)]x9=1,8 cm => CH=5-1,8=3,2 cm

\(AH^2=BH.CH=1,8.3,2=5,76\Rightarrow AH=2,4cm\)

\(S_{ABC}=\frac{BC.AH}{2}=\frac{5.2,4}{2}=6cm^2\)

NM
7 tháng 1 2021

A B C H

ta có \(\frac{9}{16}=\frac{HB}{HC}=\frac{HB.BC}{HC.BC}=\frac{AB^2}{AC^2}\)

mà \(AB^2+AC^2=BC^2=25\Rightarrow\hept{\begin{cases}AB^2=9\\AC^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}AB=3\\AC=4\end{cases}}}\)

vậy diện tích ABC là \(\frac{1}{2}AB.AC=6\)

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

Vì tỉ số hai hình chiếu của AB và AC trên cạnh huyền bằng 9/16 nên \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=25\)

\(\Leftrightarrow AC^2=16\)

\(\Leftrightarrow AC=4\left(cm\right)\)

\(\Leftrightarrow AB=3\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{4\cdot3}{2}=6\left(cm^2\right)\)

20 tháng 8 2019

a.Tu gia thuyet suy ra:\(AC=20\left(cm\right)\)

Ta co:\(AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}=\frac{15.20}{\sqrt{15^2+20^2}}=20\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{225+400}=\sqrt{625}=25\left(cm\right)\)

b.Ta co:\(BH=\frac{AB^2}{BC}=\frac{225}{25}=9\left(cm\right)\)

            \(CH=\frac{AC^2}{BC}=\frac{400}{25}=16\left(cm\right)\)

20 tháng 8 2019

A B C H

a)Ta có: AB/AC=3/4 =)AC=4*AB/3=4*15/3=2 

áp dụng đjnh lí Pytago tong tam giác vuông ABC, ta có:

BC^2=AB^2+AC^2

         =15^2+20^2

         = 225+400

         =625

BC    = căn 625=25

Vì ABC là tam giác vuông nên

áp dụng hệ thức lượng, ta dc

      AB^2=HB*BC

hay 15^2=HB*25

        HB=225/25=9

=)HC=25-9=16

và AH^2=HB*HC

             =9*16=144

   AH=căn 144=12

câu b là đoạn từ vì tam ABC đến HC=16 NHÉ BN

MK vẽ hình hơi xấu bn thông cảm hihi

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm