\(\sqrt{3}\) . Tính tanB

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2016

Kết quả = 1

30 tháng 5 2016

cho mik hỏi cách lm là j z

29 tháng 8 2020

Bài làm:

Ta có: \(AB.AC=BC.AH\) => \(\frac{AH}{AB}=\frac{AC}{BC}=\frac{24}{30}=\frac{4}{5}\)

=> \(\sin B=\frac{4}{5}\) 

Lại có: \(AB^2=BC^2-CA^2\)

<=> \(900=\frac{25}{16}AC^2-AC^2\)

<=> \(900=\frac{9}{16}AC^2\)

<=> \(AC^2=1600\) => \(AC=40\) 

=> \(BC=50\)

Từ đó ta có thể dễ dàng tính được:

\(\cos B=\frac{AB}{BC}=\frac{3}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3}{4}\)

26 tháng 10 2021

\(\sin\widehat{B}=\dfrac{\sqrt{51}}{10}\)

\(\tan\widehat{B}=\dfrac{\sqrt{51}}{7}\)

\(\cot\widehat{B}=\dfrac{7\sqrt{51}}{51}\)

12 tháng 6 2016

Vì sinB = \(\frac{3}{5}\)   , ta có : sin2B + cos2B = 1

nên cos2B = 1 - sin2B = 1 - ( \(\frac{3}{5}\) )2  = 1 - \(\frac{9}{25}\)   = \(\frac{16}{25}\)   

Vậy cosB = \(\frac{4}{5}\)    ( vì cosB > 0 )

Suy ra : tgB = sinB : cosB = \(\frac{3}{5}\)  : \(\frac{4}{5}\)   = \(\frac{3}{4}\) 

               cotgB = cosB : sinB = \(\frac{4}{5}\)   : \(\frac{3}{5}\)   = \(\frac{4}{3}\)

26 tháng 7 2016

mơn nhoa

11 tháng 8 2023

\(a,cosC=\dfrac{5}{13}\\ Ta,có:cos^2C+sin^2C=1\\ \Rightarrow sinC=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ cosB+sinC=1\\ \Leftrightarrow cosB+\dfrac{12}{13}=1\\ \Rightarrow cosB=\dfrac{1}{13}\\ tanC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)

11 tháng 8 2023

\(b,tanB=\dfrac{1}{5}\Rightarrow\dfrac{sinB}{cosB}=\dfrac{1}{5}\Rightarrow cosB=5sinB\\ E=\dfrac{sinB-3cosB}{2sinB+3cosB}=\dfrac{sinB-3.5.sinB}{2sinB+3.5.sinB}=\dfrac{-14sinB}{17sinB}=-\dfrac{14}{17}\)

5 tháng 11 2019

\(\Delta ABC\)vuông tại A có \(sinB=\frac{\sqrt{3}}{2}\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{C}=30^0\)

Lúc đó \(\Delta ABC\)là nửa tam giác đều 

\(\Rightarrow AB=\frac{1}{2}BC\Rightarrow BC=2AB=2\left(cm\right)\)

Áp dụng định lý Py-ta-go vào \(\Delta ABC\)vuông tại A, được:

\(AC^2=BC^2-AB^2=2^2-1^2=3\)

\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)

5 tháng 11 2019

Áp dụng ht lượng trong tam giác vuông có :
\(sinB=\frac{AC}{BC}\Leftrightarrow\frac{\sqrt{3}}{2}=\frac{AC}{BC}\Leftrightarrow AC=\frac{BC\sqrt{3}}{2}\)

Áp dụng đinh lí Py-ta- go vào tam giác vuông ABC có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)

\(\Leftrightarrow1+\frac{3BC^2}{4}-BC^2=0\)

\(\Leftrightarrow1=\frac{BC^2}{4}\Leftrightarrow BC^2=4\Rightarrow BC=2\left(cm\right)\)

\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)

Chúc bạn học tốt !!!