Cho tam giác ABC vuông tại A. Biết cosB = 0,8, hãy tính các tỉ số lượng giác của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Ta có:

(sinC) ^ 2 + (cosC) ^ 2 = (AB / BC) ^ 2 + (AC / BC) ^ 2

=(AB ^ 2 + AC ^ 2) / BC ^ 2 = BC ^ 2 / BC ^ 2 = 1

(Vì ABC vuông tại A mà, nên theo pitago)

-->(cosC) ^ 2 = 1 - (sinC) ^ 2 = 1 - 0,8 ^ 2 = 0,36

--> cosC = 0,6 hoặc cosC = - 0,6 (loại vì C là 1 góc nhọn)

Vậy cosC = 0,6

tanC = 0,8 / 0,6 = 4 / 3, cotC = 0,6 / 0,8 = 0,75

19 tháng 9 2021

Tham khảo ạ!

undefined

O là trung điểm của CD

AB đi qua trung điểm của CD nhưng AB không vuông góc với CD

19 tháng 9 2021

Đáp án :

undefined

O là trung điểm của CD

AB đi qua trung điểm của CD nhưng AB không vuông góc với CD

Cre : khoahoc.vietjack.com

Cần gấp ! Helppppppppp ! Bài 1: Cho hai hàm số     a) Tìm tập xác định của hàm số đã cho    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:    a) y = f(x) = (1 - √2)x + 1, với x ∈ R    b)  với x ≥ 2    c) y = f(x) = x2 + 2,với x < 0Bài 4: Cho hàm số y = (2m + 1)x - m + 3    a) Tìm m...
Đọc tiếp

Cần gấp ! Helppppppppp ! 

Bài 1: Cho hai hàm số Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Tìm tập xác định của hàm số đã cho

    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)

Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)

Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:

    a) y = f(x) = (1 - √2)x + 1, với x ∈ R

    b) Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án với x ≥ 2

    c) y = f(x) = x2 + 2,với x < 0

Bài 4: Cho hàm số y = (2m + 1)x - m + 3

    a) Tìm m biết đồ thị đi qua điểm A(-2; 3)

    b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m

Bài 5: Xác định đường thẳng đi qua hai điểm A(-2; 0) và B(0; 3)

 

Bài 6: Với giá trị nào của m thì đồ thị các hàm số y = 2x + 4 - m và y = 3x + m - 2 cắt nhau tại một điểm trên trục tung

Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2

    a) Xác định giá trị của m để hàm số đồng biến, nghịch biến

    b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.

Bài 8: Cho hai đường thẳng

    (d1 ): y = 12x + 5 - m; (d2 ): y = 3x + 3 + m

    Xác định m để giao điểm của (d1 ) và (d2 ) thỏa mãn

    a) Nằm trên trục tung

    b) Nằm bên trái trục tung

    c) Nằm trong góc phần tư thứ hai.

Bài 9: Cho đường thẳng (d):y = (m - 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.

0
Bài 1: Cho hai hàm số     a) Tìm tập xác định của hàm số đã cho    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:    a) y = f(x) = (1 - √2)x + 1, với x ∈ R    b)  với x ≥ 2    c) y = f(x) = x2 + 2,với x < 0Bài 4: Cho hàm số y = (2m + 1)x - m + 3    a) Tìm m biết đồ thị đi qua...
Đọc tiếp

Bài 1: Cho hai hàm số Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Tìm tập xác định của hàm số đã cho

    b) Tính f(2); f(1/2), g(0), g(1), g(1/2)

Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)

Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:

    a) y = f(x) = (1 - √2)x + 1, với x ∈ R

    b) Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án với x ≥ 2

    c) y = f(x) = x2 + 2,với x < 0

Bài 4: Cho hàm số y = (2m + 1)x - m + 3

    a) Tìm m biết đồ thị đi qua điểm A(-2; 3)

    b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m

Bài 5: Xác định đường thẳng đi qua hai điểm A(-2; 0) và B(0; 3)

 

Bài 6: Với giá trị nào của m thì đồ thị các hàm số y = 2x + 4 - m và y = 3x + m - 2 cắt nhau tại một điểm trên trục tung

Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2

    a) Xác định giá trị của m để hàm số đồng biến, nghịch biến

    b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.

Bài 8: Cho hai đường thẳng

    (d1 ): y = 12x + 5 - m; (d2 ): y = 3x + 3 + m

    Xác định m để giao điểm của (d1 ) và (d2 ) thỏa mãn

    a) Nằm trên trục tung

    b) Nằm bên trái trục tung

    c) Nằm trong góc phần tư thứ hai.

Bài 9: Cho đường thẳng (d):y = (m - 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.

2
16 tháng 11 2021

TL ;

Helppppppppppp ! Đang cần gấp

HT

17 tháng 11 2021

TL

1.a: Tập xác định của y=f(x) là D=[2;+)

HT

DD
21 tháng 10 2021

\(y=3x+m\)(*) 

1) a) Đồ thị hàm số (*) đi qua \(A\left(-1,3\right)\)nên \(3=3.\left(-1\right)+m\Leftrightarrow m=6\).

b)  Đồ thị hàm số (*) đi qua \(B\left(-2,5\right)\)nên \(5=3.\left(-2\right)+m\Leftrightarrow m=11\).

2) Đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ \(3x+m=0\Leftrightarrow x=-\frac{m}{3}\)

Suy ra \(-\frac{m}{3}=-3\Leftrightarrow m=9\).

3) Đồ thị hàm số (*) cắt trục tung tại điểm có tung độ \(y=3.0+m=m\)

suy ra \(m=-5\).

26 tháng 5 2015

 268 bài tập bồi dưỡng học sinh giỏi Toán lớp 9So sánh các số thực sau (không dùng máy tính):

10 tháng 9 2021

a, Gọi I là trung điểm AB 

Xét tam giác AEB vuông tại E, I là trung điểm 

=> \(EI=AI=IB=\frac{AB}{2}\)(1) 

Xét tam giác ADB vuông tại D, I là trung điểm 

=> \(DI=AI=IB=\frac{AB}{2}\)(2) 

Từ (1) ; (2) => A ; D ; B ; F cùng nằm trên đường tròn (I;AB/2)

b, Gọi O là trung điểm AC 

Xét tam giác AFC vuông tại F, O là trung điểm 

=> \(FO=AO=CO=\frac{AC}{2}\)(3) 

Xét tam giác CDA vuông tại D, O là trung điểm 

=> \(DO=AO=CO=\frac{AC}{2}\)(4) 

Từ (3) ; (4) => A ; D ; C ; F cùng nằm trên đường tròn (O;AC/2)

c, Gọi T là trung điểm BC

Xét tam giác BFC vuông tại F, T là trung điểm 

=> \(FT=BT=CT=\frac{BC}{2}\)(5) 

Xét tam giác BEC vuông tại E, T là trung điểm 

=> \(ET=BT=CT=\frac{BC}{2}\)(6) 

Từ (5) ; (6) => B ; C ; E ; F cùng nằm trên đường tròn (T;BC/2)

Câu 2:Cho tam giác ABC vuông ở A có  Với điểm M thuộc BC, ta vẽ MD và ME lần lượt song song với AC và AB. Khi DE có độ dài ngắn nhất thì = . Câu 3:Cho tam giác ABC vuông cân tại A, AC= 4cm. Điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng  cm. Câu 4:Một hình chữ nhật có chu vi là 70 cm và diện tích là . Độ dài đường...
Đọc tiếp
Câu 2:
Cho tam giác ABC vuông ở A có ?$AC%3EAB.$ Với điểm M thuộc BC, ta vẽ MD và ME lần lượt song song với AC và AB. Khi DE có độ dài ngắn nhất thì ?$\widehat{AMB}$?$^o$.
 
Câu 3:
Cho tam giác ABC vuông cân tại A, AC= 4cm. Điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng  cm.
 
Câu 4:
Một hình chữ nhật có chu vi là 70 cm và diện tích là ?$300%20cm^2$. Độ dài đường chéo của hình chữ nhật đó bằng cm.
 
Câu 5:
Số trục đối xứng của một hình chữ nhật là 
 
Câu 6:
Nếu đa thức ?$3x^3+2x^2-7x+a$ chia hết cho đa thức ?$3x-1$ thì ?$a=$
 
Câu 7:
Tập hợp các giá trị của ?$x$ thỏa mãn đẳng thức ?$(x^4-2x^2-8):(x-2)=0$ bao gồm  phần tử
 
Câu 8:
Biểu thức ?$B=x^6+x^4+x^2+2^{2015}$ đạt giá trị nhỏ nhất khi ?$x=$
 
Câu 9:
Cho tam giác ABC nhọn, các đường cao AH, BK, CL cắt nhau tại I gọi D, E, F là trung điểm của BC, CA, AB và P, Q, R là trung điểm của IA, IB, IC thì số hình chữ nhật có trên hình vẽ là 
Hãy điền số thích hợp vào chỗ .... nhé !
 
Câu 10:
Tìm số nguyên dương ?$n$ sao cho giá trị của biểu thức ?$10n^2+n-10$ chia hết cho giá trị của biểu thức ?$n-1$.
Trả lời: ?$n=$ .
1
6 tháng 1 2016

bạn làm thế nào mà làm được như vậy bạn, ý mình là sao bạn có thể tạo câu hỏi như trên đấy

29 tháng 7 2017

Nguyễn Thị Ngọc Anh

Cho 2 đường thẳng (d1): y = mx - 2 và (d2): y = (m - 2)x + m,Chứng minh với mọi giá trị của m,đường thẳng (d1) luôn đi qua điểm cố định B,đường thẳng (d2) luôn đi qua điểm cố định C,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

29 tháng 7 2017

bạn lấy bài này ở đâu ra vậy?