K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Bài này làm rồi mà

3 tháng 8 2016

bài khác

5 tháng 8 2016

A B C H D E

a) +) Vì ​\(HD\perp AB=\left\{D\right\}\) ​(vì H là hình chiếu)\(\Rightarrow\)Góc ADH = 90

   \(HE\perp AC=\left\{E\right\}\) (vì H là hình chiếu) ==> Góc AEH = 90

  +) Xét tg ADHE có: Góc ADH=AEH=90 (cmt); DAE=90(vì tam giác ABC vuông ở A) ==> tg ADHE là hcn(dhnb)

b) +) Theo HTL trong tam giác vuông ta có \(AH^2=BH.HC\Leftrightarrow AH=\sqrt{4.9}=6cm\)      

mà tg ADHE là hcn(cma)==> AH=DE=6cm (t/c hcn)

c) Ta có tam giac ADC đồng dạng vs tam giác ABE(g-g) \(\Rightarrow\frac{AD}{AE}=\frac{AC}{AB}\Leftrightarrow AD.AB=AE.AC\left(dpcm\right)\)

23 tháng 8 2017

Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.

a)Chứng minh tứ giác ADHE là hình chữ nhật

b)tính DE=?cm

c)Chứng minh AD.AB=AC.AE

Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.

a)Chứng minh tứ giác ADHE là hình chữ nhật

b)tính DE=?cm

c)Chứng minh AD.AB=AC.AE

Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.

a)Chứng minh tứ giác ADHE là hình chữ nhật

b)tính DE=?cm

c)Chứng minh AD.AB=AC.AE

bái này khó lắm

nếu làm đc cx rất dài

Vậy nha

10 tháng 10 2017

a, tứ giác EHFA có : góc A= góc E = góc F =90 độ ( GT ) 

=>> EHFA là HCN 

=>> AH = EF ( hai đường chéo HCN ) 

b, mình hơi vội nên mình gợi ý cho bạn câu b thế này ạ ! CM tam giác BAC ~ tam giác EAF 

=>> AE/AF=AC/AB 

=>> AE.AB=AF.AC 

10 tháng 10 2017

kẻ hộ mình cái hình 

a)Xét tứ giác AEHF có góc A=góc E = góc F= 90 độ nên AEHF là hình chữ nhật 

Do đó AH=EF theo tính chất 2 đường chéo của hcn

b)chưa có hình chưa làm được

2 tháng 8 2016

Vẽ hơi xấu

a)Xét tứ giác ADHE có:^ADH=90(gt)

                                    ^DAE=90(gt)

                                    ^AEH=90(gt)

=>Tứ giác ADHE là hình chữ nhật

b)Vì ADHE là hình chữ nhật(cmt)

=>DE=AH

Áp dụng hệ thức liên quan tới đường cao mta có:

 AH^2=BH.CH=4.9=36

=>AH=6

=>AH=DE=6

c)Gọi O là giao điểm của DE và AH

Vì ADHE là hình chữ nhật 

=>OA=OD

=>ΔOAD cân tại O

=>^OAD=^ODA              (1)

Ta có:^DAH=^ACB(cùng phụ với ^HAC)         (2)

Từ (1) (2)

=>^ODA=^ACB

Xét ΔADE và ΔACB có:

    ^A:góc chung

   ^EDA=^BCA(cmt)

=>ΔADE~ΔACB(g.g)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

=>AD.AB=AC.AE

 

 

2 tháng 8 2016

Ta có: ADHE là hình chữ nhật => DE =AH 
mà AH^2 = HB.HC = 36 
=> DE=AH =9 

b] 
Do ADHE là h.c.n => ^ADE = ^AHE 
mà ^AHE = ^ACH (góc có cạnh t/ư vuông góc) 
=> ^ADE = ^ACB (*) 
=> tg ADE ~ tg ABC (do * và có chung góc vuông) 
=> AD/AE = AC/AB 
=> AD.AB = AC.AE 

c] 
Ta có ^MDH = ^ADE (do cùng phụ ^HDE) 
mà ^ADE = ^ACB = ^BHD (theo cm trên và DH//AC) 
=> tg DMH cân => BM=DM=MH 
 

4 tháng 10 2017

áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12  , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20       ADHE là hình chữ nhật vi có 3 góc=90độ      áp dụng hệ thức lượng ta tính được AD và DH 

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)