\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

A B C K H I

a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có 

\(AB^2+AC^2=BC^2\)

\(3^2+4^2=BC^2\)

\(9+16=BC^2\)

\(25=BC^2\)

\(\Rightarrow BC=5cm\)

b, Ta có :

\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)

\(\Rightarrow HK//AB\left(\perp AC\right)\)

c, Xét tam giác vuông AKH và tam giác vuông  AIH có:

AH : cạnh chung

HI=HK(GT)

=>  tam giác vuông AKH = tam giác vuông  AIH ( 2 cạnh góc vuông )

=>  AK = AI ( 2 cạnh tương ứng )

=> tam giác AKI cân tại A(AK = AI  : 2 CẠNH BÊN)  

d, ta có tam giác AKI cân tại A( cmt )

\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2  góc ở đáy)              (1)

lại có HK // AB ( cmt)

=>\(\widehat{BAK}=\widehat{AKI}\)(   2 góc slt)                (2)

từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)

e, ta có tam giác vuông AKH = tam giác vuông  AIH (cmt)

\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)

xét tam giác AIC và tam giác AKC có :

AK=AI(GT)

AC: cạnh chung

\(\widehat{KAH}=\widehat{IAH}\)(CMT)

=> tam giác AIC = tam giác AKC (C-G-C)

mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép 

Câu 5 (bài cuối cùng ý)

8 tháng 2 2019

bài này tao làm khác mày cơ 

22 tháng 4 2016

có hình ko

A B C K H I

a) sử dụng tc: Từ vuông góc đến //

b)tam giác KHA= tam giác IHA(c.g.c)

=> AK=AI

=> góc AKI=góc AIK

vì AK=AI=> tam giác AKI cân

c) vì AB//HK=> góc BAK=góc AKI(so le trong) 

                                                                                   }=> góc BAK=góc AIK

                         mà góc AKI=góc AIK(cmt)                

 d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực 

tam giác AKC = tam giác AIC(c.c.c)

                                                                                                        Hết

đúng nha

27 tháng 4 2016

lam on tra loi di ạ

a) sử dụng tc: Từ vuông góc đến //

b)tam giác KHA= tam giác IHA(c.g.c)

=> AK=AI

=> góc AKI=góc AIK

vì AK=AI=> tam giác AKI cân

c) vì AB//HK=> góc BAK=góc AKI(so le trong) 

  góc BAK=góc AKI

 mà góc AKI=góc AIK(cmt)                

 d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI 

tam giác AKC = tam giác AIC

a: Ta co: HK\(\perp\)AC

AB vuông góc với AC

Do đó: HK//AB

b: Xét ΔAKI có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔAKI cân tại A

d: Xét ΔAIC và ΔAKC có

AI=AK

góc IAC=góc KAC
AC chung

Do đó: ΔAIC=ΔAKC

13 tháng 5 2022

A B C K H I

a/ Ta có

\(AB\perp AC\left(gt\right)\)

\(HK\perp AC\left(gt\right)\)

=> AB//HK (cùng vuông góc với AC)

b/ Xét tg AKI có

\(AH\perp HI\) => AH là đường cao của tg AKI

HK=HI (gt) => AH là trung tuyến của tg AKI

=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

c/ Ta có

tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)

AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)

\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )

d/ Xét tg CKI có 

\(CH\perp KI\) => CH là đường cao của tg CKI

HK=HI => CH là trung tuyến của tg CKI

=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

Xét tg AIC và tg AKC có

tg AKI cân tại A (cmt) => AI=AK

tg CKI cân tại C (cmt) => CI=CK

AC chung

=> tg AIC = tg AKC (c.c.c)