Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
BC=6,4+3,6=10(cm)
ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>AB^2=3,6*10=36; AC^2=6,4*10=64
=>AB=6cm; AC=8cm
b: ΔABC vuông tại B có BH là đường cao
nên AH*AK=AB^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>AH*AK=BH*BC
c: Xét ΔAEK vuông tại E và ΔAHC vuông tại H có
góc EAK chung
=>ΔAEK đồng dạng với ΔAHC
=>AE/AH=AK/AC
=>AE/AK=AH/AC
Xét ΔAEH và ΔAKC có
AE/AK=AH/AC
góc EAH chung
=>ΔAEH đồng dạng với ΔAKC
=>\(\dfrac{EH}{KC}=\dfrac{AH}{AC}=\dfrac{3}{5}\)
=>HE=3/5KC
Câu c)
Ta có: AD là phân giác ^BAC
=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o
Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o
=> ^ABI = 45o
Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân
có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM
=> BM = 2 BI
Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB2 = BI.BM = BI.2BI = 2BI2
Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB2 = BH.BC
=> BH.BC = 2BI2
a) Ta có tứ giác AIMJ là hcn=> AIMJ nội tiếp đường tròn đường kính AM, IJ
Vì N đối xứng với M qua IJ => góc JNI = góc JMI = 90o ha N thuộc đường tròn đường kính AM và IJ => góc ANM = 90o
mà I thuộc trung trực MN => tam giác MIC vuông cân tại I => I thuộc trung trực MC
=> I là tâm đường tròn ngoại tiếp tam giác MNC
=> góc MNC =1/2 góc MIC = 450
=> góc ABC + góc ANC = 45+90+45=1800
Hay tứ giác ABCN nội tiếp đường tròn (T) (ĐPCM)
b)CM: 1/PM<1/PB+1/PC ?
Ta có: tam giác MPC đồng dạng tam giác MBA => PM/MB=PC/BA => PM/PC=MB/BA (1)
TAM GIÁC MBP đồng dạng tam giác MAC => PM/MC=PB/CA=> PM/PB=MC/AC (2)
Cộng vế theo về của (1) và (2) ta có:
PM/PC+PM/PB=MB/BC+MC/AC=MB/BA+MC/BA=AC/BA>1 => ĐPCM
c) Áp dụng hệ thức giữa cạnh và đường cao ta có:
DH2=DK.DC => DA2=DK.DC
=> DA/DC=DK/DA => TAM GIÁC DKA đồng dạng tam giác DAC => góc AKD =DAC =45o
=> góc ABH+ góc AKH = 45+45+90=1800=> TỨ GIÁC ABHK nội tiếp
=> Góc AKB =AHB =90 = GÓC HKC
Mà góc ABK =AHK=KCH => đpcm
a. Hai tam giác vuông AMO và ANO có AO cạnh huyền chung; ^MAO = ^NAO => ΔAMO =ΔANO (cạnh huyền - góc nhọn) => AM = AN. Trong đường tròn đường kính AO có dây AN = dây AM => Cung AN = cungAM => ^MHA = ^NHA (chắn hai cung bằng nhau )
=> HA là phân giác của ^MHN (đpcm)
b. Ta có ^AMO = ^AHO =^ANO = 90 nên các điểm A, M, H, O, N thuộc đường tròn đường kinh AO
ủa gì vậy ạ ai lại cmt dạo vậy bao giờ
Để đấy tí xóa :v