Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH = \(\frac{12a}{5}\), BC=5a. Tính 2 cạnh góc vuông theo a.

2x Diện tích tam giác ABC = AC * AB = AH * BC = \(\frac{12a}{5}\cdot5a=12a^2\)
Tam giác ABC vuông tại A, theo Pitago ta có: \(AC^2+AB^2=BC^2=25a^2\)
\(\Rightarrow AC^2+AB^2+2AB\cdot AC=25a^2+2\cdot12a^2=49a^2\Rightarrow\left(AB+AC\right)^2=\left(7a\right)^2\Rightarrow AB+AC=7a\)(1)
\(\Rightarrow AC^2+AB^2-2AB\cdot AC=25a^2-2\cdot12a^2=a^2\Rightarrow\left(AB-AC\right)^2=a^2\Rightarrow\left|AB-AC\right|=a\)(2)
Từ (1) và (2) ta có:
Hoặc: \(\hept{\begin{cases}AB=4a\\AC=3a\end{cases}}\)hoặc \(\hept{\begin{cases}AB=3a\\AC=4a\end{cases}}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

A B C H
Giả sử: AB < AC
Áp dụng Pytago ta có: AB2 + AC2 = BC2 => AB2 + AC2 = 25a2
Áp dụng hệ thức lượng ta có: AB.AC = AH.BC => AB.AC = 12a2 => AB2 . AC2 = 144a4
Theo hệ thức Vi-ét thì AB2 và AC2 là nghiệm của phương trình:
\(x^2-25a^2+144a^4=0\)
\(\Leftrightarrow\)\(\left(x-16a^2\right)\left(x-9a^2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=16a^2\\x=9a^2\end{cases}}\)
Do AB < AC => AB2 < AC2 (theo cách vẽ)
=> \(\hept{\begin{cases}AB^2=9a^2\\AC^2=16a^2\end{cases}}\)=> \(\hept{\begin{cases}AB=3a\\AC=4a\end{cases}}\)

BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)

A B C H
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)