Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !

a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Ta có: CD//AB
=>\(\hat{CDH}=\hat{HAB}\) (hai góc so le trong)
mà \(\hat{HAB}=\hat{C}\left(=90^0-\hat{CAH}\right)\)
nên \(\hat{CDA}=\hat{ACB}\)
Ta có: CD//AB
AB⊥CA
Do đó: CD⊥CA
Xét ΔCDA vuông tại C và ΔACB vuông tại A có
\(\hat{CDA}=\hat{ACB}\)
Do đó: ΔCDA~ΔACB
=>\(\frac{CD}{AC}=\frac{CA}{AB}\)
=>\(AB\cdot CD=AC^2\)
c: ΔCHD vuông tại H
mà HK là đường trung tuyến
nên KH=KD
=>ΔKHD cân tại K
ΔHAB vuông tại H
mà HI là đường trung tuyến
nên IA=IH
=>ΔIAH cân tại I
Ta có: \(\hat{IHA}=\hat{IAH}\) (ΔIAH cân tại I)
\(\hat{KHD}=\hat{KDH}\) (ΔKDH cân tại K)
mà \(\hat{KDH}=\hat{HAI}\) (hai góc so le trong, CD//AB)
nên \(\hat{KHD}=\hat{AHI}\)
mà \(\hat{AHI}+\hat{IHD}=180^0\) (hai góc kề bù)
nên \(\hat{KHD}+\hat{IHD}=180^0\)
=>K,H,I thẳng hàng
hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)