Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B H M A C N
( Hình ảnh chỉ mang tính chất minh họa )
a) Tính BC và AH :
Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :
AB2+AC2=BC2AB2+AC2=BC2
82+152=BC282+152=BC2
⇒BC=17(cm)⇒BC=17(cm)
Ta có : SABC=12⋅AB⋅AC=12⋅AH⋅BCSABC=12⋅AB⋅AC=12⋅AH⋅BC
⇔AH=AB⋅ACBC=8⋅1517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)
b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)
=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).
Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.
⇒MN=AH=12017(cm)⇒MN=AH=12017(cm)
c) Vì N là hình chiếu của H trên AC ⇒N∈AC⇒N∈AC
mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC
Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC
Suy ra : AM⋅AC=AN⋅AB(đpcm)
a: Xét ΔABC vuông tai A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)
AH=8*15/17=120/17(cm)
c: AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC
xét tứ giác AEHD có
góc DAE = 90 độ( tam giác ABC vuông tại A)
HEA = 90 dộ (gt)
góc HDA= 90 đọ (gt)
=> AEHD là hình chữ nhật( dhnb hcn)
=> AH=DE( t/c hcn)
c) +b)
gọi giao điểm của hai đường thẳng DE và AH là o
=>oa=oe ( t/c hcn)
=> góc OAE= góc OEA( t/c tam giác cân)
có góc OAE + C= 90 độ
góc OEA + EDA = 90 độ
=> góc ADE= góc C
có góc ADE + OEA = 90 độ C + B =90 độ
=> góc OEA = góc B
xét tam giác ADE vuông tại A và tam giác ACB vuông tại A có:
góc OEA = góc B
góc ADE= góc C
=> tam giác ADE dồng dạng vs tam giác ACB (g.g)
=> AD/AC=AE/AB
=> AD.AB=AE.AC
a: Xét ΔHAC vuông tại A và ΔBAC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔBAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=3^2/5=1,8cm
c: AD*AB=AH^2
AE*AC=AH^2
=>AD*AB=AE*AC
b, chứng minh tương tự câu a:
ΔAHN đồng dạng ΔACH ⇒AH/AC=AN/AH
⇒AH⊃2;=AN.AC
⇒AB.AM=AC.AN=AH⊃2;
xét ΔAMN và ΔACB có : góc A chung
AM.AB=AN.AC⇒AM/AN=AC/AB
⇒ΔAMN đồng dạng ΔACB