K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).

a) Chứng minh: HB < AH < HC.

b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.

   Chứng minh: CI là tia phân giác của góc ACB.

c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).

   Chứng minh: ID + IC > KE+ DC.

Câu hỏi tương tự Đọc thêm
Toán lớp 7Hình học
              
 
1 tháng 5 2016

ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

4 tháng 4 2021

Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá

a, Ta có : BH = HC = BC : 2

    =>    BH = HC = 8 : 2

    =>    BH = HC = 4 ( cm )

    => BH = HC

b, - Xét tam giác AHB vuông tại H có :

          AC= AH2 + HC2

=>     52  =   AH2  +   42

=>    25  = AH2  +  16

=> AH2 = 25 + 16

=> AH2 = 41

=> AH = 20,5 ( cm )

3 tháng 3 2022

a.Xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( cạnh huyền. góc nhọn)

=> HB = HC ( 2 cạnh tương ứng )

b.Xét tam giác vuông ADH và tam giác vuông AEH, có:

AH: cạnh chung

góc DAH = góc EAH ( AH là đường cao cũng là đường phân giác )

Vậy tam giác vuông ADH = tam giác vuông AEH

=> HD = HE ( 2 cạnh tương ứng )

=> tam giác HDE cân tại H

c.Xét tam giác vuông AEC và tam giác vuông ADB, có:

AB = AC ( ABC cân )

góc A: chung 

Vậy tam giác vuông AEC = tam giác vuông ADB ( cạnh huyền.góc nhọn)

=> AD = AE ( 2 cạnh tương ứng )

=> tam giác ADE cân tại A

=> AH vuông với DE, mà AH cũng vuông với BC

=> DE//BC ( DE ko phải DC nha bạn )

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó:ΔAHB=ΔAHC

Suy ra: HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

c: Ta có: ΔADH=ΔAEH

nên AD=AE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểmcủa BC

hay HB=HC

b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra HD=HE

hay ΔHDE cân tại H

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

a/ Xét tam giác AHB và tam giác AHC có:

AH chung

Góc AHB=AHC=90o

Góc ABC=ACB(Tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC(ch-gn)

=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)

b/ Xét tam giác AHD và tam giác AHE có:

AH chung

ADH=AEH=900

DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)

=> Tam giác AHD=tam giác AHE(ch-gn)

=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)

=> Tam giác HDE cân tại H.

B C A H D E